
Red Condor Verifier XML Syntax

0830-0023, Rev. 1

October 2009

Property of EdgeWave Inc. Proprietary and Confidential

Contents

Document Revisions..7

Verifier Syntax ..9

VrfyXML Elements..11
List of Elements and Attributes..12

Connect Elements...12
Event Elements...13
LDAP Verifier Elements ..14
SMTP Verifier Elements..15
Database Verifier Elements ..16
Sub-Verifier Elements ...17

The Vrfy Element ...17

Generic/Shared Elements ...18

Meta Elements ...18

Connect Elements ...19
element: <Timeout> ..19
element: <Credentials>...20
element: <BackendMax> ..21
element: <BackendIdleTime> ...22
element: <Host> ...23
element: <HostListOrder>...25
Connect Elements Example: LDAP ..25
Connect Elements Example: SMTP VRFY ...26
Connect Elements Example: DataBase ..26
Connect Elements Example: Communigate ...27
Connect Elements Example: Multi ..27

Event Elements..28
element: <InterEnumTime> ..28
element: <InterDiscTime>...30

Property of EdgeWave Inc. Proprietary and Confidential

Verifier Types..31
LDAP Verifiers ...31

About LDAP Searches ..32
element: <BaseDN>..33
element: <Filter>...33
element: <Canonical> ...34
element: <StripPfx> ..36
element: <EnumFilter>..36
element: <EnumTest>...37
element: <EnumTo> ...38
element: <EnumFrom> ...39
element: <DiscFilter> ..39
element: <DiscAttr> ..39
LDAP Example 1 ..40
LDAP Example 2 ..40
LDAP Example 3 ..41

SMTP Verifiers ...41
element: <Threshold> ...41
element: <Errmap> ...42
element: <UseBrackets>...42
SMTP Examples ...42

Communigate Verifier ...43
Communigate Example...44

Database Verifiers ...44
Query Placeholders ..44
element: <Vendor> ...45
element: <DBName> ..45
element: <VrfyQuery>...45
element: <AuthQuery>..46
element: <DiscQuery> ..47
element: <EnumQuery>..47
DataBase Examples ...48

Multi Verifier...49
Sub-Verifier Attributes...50
Element <Domain> ...51
Multi Verifier Example 1 ..51
Multi Verifier Example 2 ..52
Multi Verifier Example 3 ..53
Multi Verifier Example 4 ..53

© 2006-2009 EdgeWave Inc. 4 All Rights Reserved

Appendix A: Verifier Feature Implementation Status57

Appendix B: Configuration Element Summary59

© 2006-2009 EdgeWave Inc. 5 All Rights Reserved

Document Revisions
The table below shows revision changes of this document:

Revision Date Changes

03 09/04/09 Added support for POP3 verifiers. See VrfyXML
Elements (on page 11), Connect Elements (on page 12),
element: <Timeout> (on page 19), element: <Host> (on page
23), element: <InterEnumTime> (on page 28), Verifier Types
(on page 31), SMTP Verifiers (on page 41), SMTP
Examples (on page 42), Appendix A: Verifier Feature
Implementation Status (on page 57), and Appendix B:
Configuration Element Summary. (see "Appendix B:
Configuration Element Summary" on page 59)

Property of EdgeWave Inc. Proprietary and Confidential

Chapter 1

Verifier Syntax
Verifiers define a method for validating an email address and/or authenticating a user.
Verifiers are used in domain configuration. They consist of settings used for communicating
with the verification server.

The verifier service contains components that improve verification performance including:

 Enumeration: All valid addresses are retrieved from the verification server and cached
locally to speed up verification and reduce the load on network resources.

 Domain discovery: The domains serviced by each verification server are determined
and put in a list.

Verifiers are defined through the Red Condor Administrator Dashboard, or the Red Condor
Provisioning API using the Red Condor Verifier XML Syntax (VrfyXML). The Provisioning
API exposes additional settings not available in the Administrator Dashboard. Each verifier
instance is described by a single <Vrfy> element.

Note: XML is case sensitive. In general, XML element names in
VrfyXML are CamelHumps case while attribute names are usually all
lower case. CamelHumps case are also acceptable for attribute values.
Also note that the XML comment <!-- ... --> is valid within
VrfyXML.

Property of EdgeWave Inc. Proprietary and Confidential

Chapter 2

VrfyXML Elements
The <Vrfy> element is the top level XML element (document root) for each verifier. Inside
of each <Vrfy> element is one verifier type element. Red Condor supports the following
verifier types:

 LDAP
 RcptTo
 Postfix (SMTP VRFY)
 Communigate
 DataBase
 POP3
 Multi

The Multi verifier type is special. It can contain one or more of the other verifier types.
When they appear inside of a <Multi> element, they are called sub-verifiers. The options
available in configuring sub-verifiers are different from top-level verifiers. Also, a Multi
verifier cannot contain another Multi verifier.

All other configurable data exists inside of the typed-verifier. Some configuration options are
available in more than one type of verifier. Other configuration options are only available for
a specific verifier type.

This document discusses the attributes of the <Vrfy> element first, then the shared elements
available to more than one of the verifier types. Then, each verifier type has its own section
describing which of the shared elements and which unique elements it may/must contain.
Finally, there are some examples.

Appendix A: Verifier Feature Implementation Status (on page 57) shows the feature
implementation status for the verifier types. Appendix B: Configuration Element Summary (on
page 59) summarizes the elements that can appear in each type of verifier and how many may
appear.

© 2006-2009 EdgeWave Inc. 11 All Rights Reserved

List of Elements and Attributes
The following tables list all elements and their attributes for each type of verifier, and gives a
description and displays their valid options.

Connect Elements

Element Attributes (A)/
Sub-Elements (S)

Description Valid Options

BackendIdleTime
(see "element:
<BackendIdleTime>
" on page 22)

Defines the number of
seconds a connection can
remain idle before it is
automatically closed

Positive integer

BackendMax (see
"element:
<BackendMax>" on
page 21)

The maximum number of
connections allowed to
the verifier server

Positive integer

enumMax (A) Limits how many of the
available <BackendMax>
connections can be used
for address enumeration

A positive integer no greater than
<BackendMax>, or an integer
percentage

Credentials (see
"element:
<Credentials>" on
page 20)

User name and password
for access to the
verification server

Maximum one user name/password
set

Username (S) Name of the user ASCII text

Password (S) Password of the user Clear text

EncPass (S) Encoded password of the
user

Password in the encryption format
used by the verification server

Host (see "element:
<Host>" on page
23)

Host name of the
verification server

Host name or IP address

secure (A) The connection to the
verification server is made
using SSL

true: Uses SSL encryption for secure
connection.
false: Does not use SSL encryption
for secure connection.
starttls: Use TLS for authentication
requests. If TLS is not supported the
request fails.
trystarttls: Attempt to use Transport
Layer Security (TLS) for
authentication requests. If TLS is not
supported, communication with the
verification server is not encrypted.

allowInsecureAuth (A) Whether or not the
authentication request can
be sent in clear text.

true: Authentication requests can be
sent unencrypted.
false: Unencrypted authentication
requests fail.
Default value is true.

© 2006-2009 EdgeWave Inc. 12 All Rights Reserved

defaultRouteMatch (A) Used to remove a specific
<Host> element from
consideration based on
the default route of the
appliance.

A regular expression that must match
the default route of the appliance. If it
does not match, the host is not
considered at all when establishing
connections to the servers defined in
the <Host> elements.

defaultRouteNoMatch (A) Used to remove a specific
<Host> element from
consideration based on
the default route of the
appliance.

A regular expression that cannot
match the default route of the
appliance. If it does match, the host is
not considered at all when
establishing connections to the
servers defined in the <Host>
elements.

HostListOrder (see
"element:
<HostListOrder>"
on page 25)

The algorithm used to
select the next server to
query

Static: (Default) Selects the first host
from the list. If it is unsuccessful, it
selects the other hosts in order until
one is successful.
Rotate: Selects the next entry from
the list of <Host> elements in a ring
fashion.
Shuffle: Randomly selects an entry
from the list of <Host> elements.

Timeout (see
"element:
<Timeout>" on
page 19)

Maximum number of
seconds between the time
the application sends a
request and it receives a
response before the
request is treated as a
failure

Positive integer. Defaults:

LDAP: 10

Communigate: 10

DataBase: 10

Postfix: 10

RcptTo: 20

POP3: 10

Event Elements

Element Attributes Description Valid Options
InterDiscTime (see
"element:
<InterDiscTime>"
on page 30)

The execution frequency of
the domain discovery query

In minutes. Non-negative integer.
Default value is zero (no domain
discovery). For Multi verifiers only.

InterEnumTime
(see "element:
<InterEnumTime>"
on page 28)

The amount of time between
address enumerations

In minutes. Non-negative integer. If set
to zero, then address enumerations
will not occur

© 2006-2009 EdgeWave Inc. 13 All Rights Reserved

LDAP Verifier Elements

Element Attributes (A)/
Sub-Elements

Description Valid Options

defaults (A) The set of sub-element
default values for a particular
LDAP server type

Generic
Active Directory
GroupWise
Zimbra
Domino

BaseDN (see
"element:
<BaseDN>" on
page 33)

Specifies the Base
Distinguished Name to use
when searching for a email
address and enumerating
addresses

LDAP distinguished name

Canonical (see
"element:
<Canonical>" on
page 34)

Specifies templates used by
the application to determine
how to construct the email
address from an LDAP search
result

%{attribute name}
%{rciVRFYdomain}
combined with string constants

DiscAttr (see
"element:
<DiscAttr>" on
page 39)

Attributes to be returned from
a domain discovery LDAP
search

LDAP attribute name

DiscFilter (see
"element:
<DiscFilter>" on
page 39)

LDAP filter, for sub-verifier
only, that identifies the
domains served by the LDAP
server

LDAP query syntax

EnumFilter (see
"element:
<EnumFilter>" on
page 36)

Specifies the LDAP search
filter used for address
enumeration

LDAP query syntax

EnumFrom (see
"element:
<EnumFrom>" on
page 39)

For address enumeration, the
attribute containing the alias
address

LDAP attribute name

EnumTest (see
"element:
<EnumTest>" on
page 37)

Used to constrain address
enumeration search results
returned by
<EnumFilter>

Attribute (S) Names an attribute to check

Test (S) The condition required to
keep a record

operator= (A) The operator for the test
condition

>,!=,ge,<,==,le,>=,gt,eq,<=,lt,ne

EnumTo (see
"element:
<EnumTo>" on
page 38)

Specifies templates used by
the application to determine
how to construct the email
address from an LDAP search
result for address
enumeration

%{attribute name}
%{rciVRFYdomain}
combined with string constants

© 2006-2009 EdgeWave Inc. 14 All Rights Reserved

Filter (see
"element: <Filter>"
on page 33)

The LDAP search filter to use
for email address verification

Accepts the following placeholder
variables:
%D - The first domain
component.
%u - The username of the email
address being verified.
%d - The domain name of the
email address being verified.
%e - The equivalent of %u@%d .

StripPfx (see
"element:
<StripPfx>" on
page 36)

Used to strip a prefix from an
attribute value before
constructing the email
address to be returned

Attribute (A) Target attribute LDAP attribute

Prefix (A) String to strip off the attribute
value

String

SMTP Verifier Elements

Element Sub-Elements Description Valid Options
Errmap (see
"element:
<Errmap>" on
page 42)

Maps SMTP response
code to new value, based
on the matching of a free-
form regular expression

Must contain one <Text> and one
<Code> element.

Text A Perl-compatible regular
expression to be matched
against each response line
from the SMTP server

Code The replacement response
code for when the text is
matched

Must contain a three digit integer

Threshold (see
"element:
<Threshold>"
on page 41)

Minimum SMTP response
code number that is
considered a failure

Positive integer. Default is 300

UseBrackets
(see "element:
<UseBrackets>"
on page 42)

Whether or not the email
address is surrounded by
angle brackets

true or false

© 2006-2009 EdgeWave Inc. 15 All Rights Reserved

Database Verifier Elements

Element Attributes Description Valid Options
AuthQuery (see
"element:
<AuthQuery>" on
page 46)

The SQL query issued for login
authentication

SQL
Placeholders %?U, %?D, and/or
%?E, as well as either %?C or %?M.
The query must returns one or zero
rows. When zero rows are returned,
the authentication fails.

DBName (see
"element:
<DBName>" on
page 45)

The name of the database to
connect to

String. Required

DiscQuery (see
"element:
<DiscQuery>" on
page 47)

The SQL query issued to find
all unique domains that have
email addresses on the server

Returns one row per domain, each
row having a single column
containing the domain name

EnumQuery (see
"element:
<EnumQuery>" on
page 47)

The SQL query to find all email
addresses the database server
will verify

The response should be one row for
each email address and one for each
alias

Vendor (see
"element:
<Vendor>" on page
45)

Required element that
specifies the type of database

MySQL
Postgres

SQLite (reserved for testing
purposes)

VrfyQuery (see
"element:
<VrfyQuery>" on
page 45)

The SQL query used for email
address verification

The first column is required and holds
the canonical form of the requested
email address.
The second column is optional and
returns a unique ID to be used when
two-step authentication is performed.

© 2006-2009 EdgeWave Inc. 16 All Rights Reserved

Sub-Verifier Elements

Element Attributes Description Valid Options
optional Whether or not to ignore

errors during lookup and
proceed to the next sub-
verifier.

true or false

service Defines how the verifier is
used.

omit: The results of address
verification are inverted. If the sub-
verifier finds a match, it will not search
further and will return a failure.
verify: The sub-verifier is only used for
verification, and is ignored when
processing authentication requests.
all: The sub-verifier is used for both
verification and authentication
requests.
Default value is all

enumerate Whether or not to enable
enumeration for the sub-
verifier.

true or false

Domain (see
"Element
<Domain>" on page
51)

Limits use of the sub-verifier
to the specified domain

Domain name. Valid only when used
with a sub-verifier.

The Vrfy Element
<Vrfy> is the top-level element for defining verifiers. It has one sub-element and four
attributes: version (required), uid, name, and disable.

attribute: version

Value: string

All verifiers require the version attribute. It specifies the version of the VrfyXML syntax the
given document is written in. All future versions of the application will be backwardly
compatible.

attribute: uid

Value: string

The uid is the unique identifier of the verifier and is required for updating verifiers. It is not
required for adding a verifier.

© 2006-2009 EdgeWave Inc. 17 All Rights Reserved

attribute: name

Value: string

The name is a user-friendly identity of the verifier. It is used to identify the verifier in the
Administrator Dashboard, and is optional. If used, it need not be unique.

attribute: disable

Value: true/false

Setting disable to "true" makes the verifier unavailable for use. The verifier will still be
stored in the database but switched off.

sub-element: <MetaData>

The <MetaData> sub-element is read-only and used by the application to store information.
Do not modify the content of the <MetaData> sub-element when updating a verifier.
<Vrfy> may contain any number of <MetaData> sub-elements. The <Vrfy> element also
contains exactly one verifier type element (such as <LDAP> or <RcptTo>).

The following example shows only the structure of the document-level <Vrfy> element
along with its attributes and a single <MetaData> sub-element.
<Vrfy version = "101.4635"

name = "My Favorite Verifier"
uid = "64378E86-A459-11DD-1273-09173F13E4C5">

 <MetaData>
 <Editable>true</Editable>
 </MetaData>

</Vrfy>

Generic/Shared Elements
The following elements can appear in more than one verifier type. They are divided into
groups defined by the element's purpose:

 Meta: elements that affect the verifier itself.
 Connect: elements that relate to the establishment of application level connections to

the verification server.
 Event: elements that control the frequency of periodic events.

Meta Elements
Meta elements are for Red Condor internal use only.

© 2006-2009 EdgeWave Inc. 18 All Rights Reserved

Connect Elements
The Connect elements, <Timeout>, <Credentials>, <BackendMax>,
<BackendIdleTime>, <Host>, and <HostListOrder> relate to the establishment and
management of a pool of TCP connections between the verifier and the verification server.
<BackendMax>, <Host>, and <HostListOrder> work together to control the number of
simultaneous connections managed by the application, and also define how the host to
connect to is selected from a set of verification servers.

element: <Timeout>
Value: positive integer (in seconds)

A single <Timeout> element may appear in any top-level or sub-level verifier. If you do not
provide a <Timeout> element, then each verifier type uses its own default value.

Type Default Timeout (seconds)

LDAP 10

Communigate 10

DataBase 10

Postfix 10

RcptTo 20

POP3 10

Multi (see below)

A timeout begins when the application sends a request to the verification server. It stops
when the server responds with a complete message. In addition, because the number of
connections is limited, issuing a request to a busy server can result in an unlimited wait for a
free connection to become available.

When a timeout does occur, it is treated as an error. This error always results in the
application closing the particular connection on which the timeout occurred. However, the
application may reissue the same request to a different server, or it may return a failure for
the current operation.

For Multi verifiers, you can specify zero or one <Timeout> element in the <Multi> element
itself, and also zero or one <Timeout> element in each sub-verifier. If the <Multi> element
itself contains no timeout, then each sub-verifier has a default value that can be overridden
with a locally scoped <Timeout> element. If the <Multi> element does have a <Timeout>,
then that <Timeout> becomes the default for any sub-verifier that does not contain its own
<Timeout> element.

© 2006-2009 EdgeWave Inc. 19 All Rights Reserved

In the following example, a request to the "My Multi Verifier" verifier results in the following
queries (stopping at the first match or error):

 LDAP lookup on ldap-1.company.com with timeout of 3 seconds
 RcptTo lookup on mail.company.com with timeout of 4 seconds
 LDAP lookup on ldap-2.company.com with timeout of 5 seconds

<Vrfy version = "101.4635"
name = "My Multi Verifier"
uid = "64378E86-A459-11DD-1273-09173F13E4C5">

 <Multi>
 <Timeout>4</Timeout>
 <LDAP>

<Host>ldap-1.company.com</Host>
<Timeout>3</Timeout>

 </LDAP>
 <RcptTo>

<Host>mail.company.com</Host>
 </RcptTo>
 <LDAP>

<Host>ldap-2.company.com</Host>
<Timeout>5</Timeout>

 </LDAP>
 </Multi>
</Vrfy>

element: <Credentials>
Add a <Credentials> element for verifier types that require a username and password
combination for access. Only one such element is allowed. The following verifier types
support the <Credentials> element (both as top-level or as sub-verifiers in a <Multi>
element): <LDAP>, <Communigate>, and <DataBase>.

Credentials cannot be shared across sub-verifiers by putting credentials at the top of a
<Multi> verifier. A <Credentials> element must contain both a <Username> and one of
the supported types of password element. The <Password> element can be encrypted or
clear text.

sub-element: <Username>

The <Username> element can contain any text. For an LDAP verifier, it is the Distinguished
Name (DN) to bind with. For a DataBase or Communigate verifier, it is simply the user
name.

sub-element: <Password>

The <Password> element contains the password in clear text.

© 2006-2009 EdgeWave Inc. 20 All Rights Reserved

sub-element: <EncPass>

The <EncPass> element contains the encrypted password.

When you submit a verifier through the Red Condor Provisioning API, you can enter the
clear text of the password into a <Password> element. It will then be transformed into an
encrypted version and stored internally within an <EncPass> element. If you know the
<EncPass> text corresponding to the password, you can craft your Red Condor Provisioning
API submission with an <EncPass> element instead of a <Password> element.

If you do not supply credentials to an LDAP server, an anonymous bind is attempted.
Because SQL servers can be configured to trust certain hosts without a password, you can
also omit credentials from a DataBase verifier. Currently, connections to the Communigate
server require a <Credentials> element. This requirement may change in a future release.

element: <BackendMax>
Value: positive integer

The <BackendMax> element gives the maximum number of simultaneous connections
allowed between the verifier and the verification server. Each verifier maintains a pool of
connections to its verification server. Whenever a request to verify, authenticate, discover, or
enumerate is received, the application attempts to re-use an existing connection. Once such a
command completes, the connection is stored in a pool of available connections.

Sometimes there are no available established connections, either because none have yet been
established, or all the established connections are in use. In this case, the application adds a
new connection to the pool and assigns it to the requesting command.

In order to control the load a verifier places upon the verification servers, the application
imposes a limit on the maximum number of connections it will make for a verifier. This limit
is stored in the <BackendMax> element. Note that, even though multiple hosts may be
specified within a given verifier, it is the total number of connections across all hosts (even if
some have zero connections) that count towards this maximum. When there are
<BackendMax> active connections, additional requests for email address verification are
enqueued until a connection becomes free. However the application will impose a time limit
of 60 seconds on each verification request.

attribute: enumMax

Value: positive integer or integer percentage

The <BackendMax> element also may contain an optional enumMax attribute. The
enumMax attribute limits how many of the available <BackendMax> connections can be
used for enumeration. The enumMax attribute is either a positive integer no greater than
<BackendMax> or an integer percentage.

© 2006-2009 EdgeWave Inc. 21 All Rights Reserved

Because enumeration commands receive priority in the job queue, servers that support
enumerations over many connections in parallel could starve out all other requests until the
enumeration completes. Enumerations can take up to ten minutes to complete for large
domains. The enumMax attribute exists to prevent such starvation. Note that once an
enumeration is successful, no verification servers are needed to service the typical verification
request, even while a subsequent enumeration command is underway.

The following table shows the default connections for each verifier type:

Type Default BackendMax Default enumMax

LDAP 50 1

Communigate 5 80%

DataBase 50 1

Postfix 50 1

RcptTo 50 1

POP3 50 0

Multi (see below) (see below)

For Multi verifiers, you can specify zero or one <BackendMax> element in the <Multi>
element itself, and also zero or one <BackendMax> element in each sub-verifier. If there is
no <BackendMax> in the Multi verifier itself, then each sub-verifier has its normal default
value that can be overridden with a locally scoped <BackendMax> element.

If the Multi verifier does have a <BackendMax> element, then it becomes the default for any
sub-verifier that does not contain its own <BackendMax> element. The value of the
enumMax attribute uses the above defaults when unspecified and propagates down
automatically when it is inherited within a Multi verifier. See Communigate Example (on page
44) and Multi Verifier Example 4 (on page 53) for examples of this usage.

element: <BackendIdleTime>
Value: positive integer (in seconds)

This element defines the amount of time (in seconds) a connection can remain idle before
the application will automatically close it. The default value for <BackendIdleTime> is 90
seconds for all verifier types that maintain open connections. A sub-verifier in a Multi verifier
can inherit the value of <BackendIdleTime> from its <Multi> parent. Red Condor
recommends setting the <BackendIdleTime> to less than the <InterEnumTime>.

© 2006-2009 EdgeWave Inc. 22 All Rights Reserved

Once an enumeration has successfully completed, most connections will become idle,
because most verification requests will be handled from the cached email information
gathered during the enumeration. If these idle connections are not closed, then when the
next enumeration begins, it may choose stale connections resulting in a transient failure of
the enumeration.

element: <Host>
Value: IP address or host name

The <Host> element identifies the verification server. If there is more than one <Host>
element, each is expected to serve the same set of data. One reason to have multiple <Host>
elements is for high-availability.

For example, you can specify an LDAP primary server as one <Host> and its mirror in
another. Another application of multiple hosts is to spread the load across many verification
servers. However, if you have a domain where different verification servers send different
data, then you do not need multiple <Host> entries in your verifier. Use a <Multi> verifier
instead.

At least one <Host> element is required by <LDAP>, <Postfix>, <RcptTo>, <DataBase>,
<POP3> and <Communigate> verifiers. When used with a DataBase <Vendor> of SQLite
(testing only), the value of any <Host> element is ignored. The <Host> element is not valid
in the <Multi> parent.

Each <Host> element contains a host-name or IP address followed by an optional colon and
TCP port number. If the port number is not given, a default port number is assumed. See the
table below for default ports.

The attributes of the <Host> element offer connection controls. These attributes are secure,
allowInsecureAuth, and defaultRouteMatch/defaultRouteNoMatch.

attribute: secure

Value: true/false, starttls, trystarttls

When the secure attribute is set to true, the connection between the verifier and the
verification server is encrypted. The starttls uses Transport Layer Security (TLS) for
authentication requests. If TLS is not supported the request fails. The trystarttls attribute
attempts to use TLS for authentication requests. If TLS is not supported, communication
with the verification server is not encrypted.

The following table summarizes default port numbers for various types of verifiers,
depending on the value of the secure attribute.

© 2006-2009 EdgeWave Inc. 23 All Rights Reserved

Type Default Clear Port
secure = false

Default Secure Port
secure = true

LDAP 389 636

Communigate1 106 106

MySQL DB2 3306 3306

PostgreSQL DB2 5432 5432

SQLite DB N/A N/A

Postfix/RcptTo 25 465

POP3 995 110

1 Note that Communigate verifiers cannot listen on both a secure and an insecure port. The
Communigate administrator selects the port. The standard practice for a Secured
Communigate server is to run it on port 106. On Mac OS X, Communigate CLI's default
port is 8106. Therefore use <hostname>:8106 when connecting to a Communigate verifier
running OSX.

2 Note that the default port number for a <DataBase> verifier depends upon the verifier
<Vendor> element.

attribute: allowInsecureAuth

Value: true/false

The allowInsecureAuth attribute controls the sending of authentication requests through
clear text. When "true", authentication requests can be sent unencrypted. When "false",
authentication requests sent unencrypted fail. The default value is true.

attribute: defaultRouteMatch

attribute: defaultRouteNoMatch

Value: regular expression

The defaultRouteMatch and defaultRouteNoMatch attributes are used to remove a
specific <Host> element from consideration based on the default route of the appliance. This
feature is used to allow a single verifier definition to be replicated to hosts both behind a
customer firewall (such as an appliance) and outside the customer's firewall (such as a Vx
appliance).

The defaultRouteMatch attribute contains a regular expression that must match the default
route of the appliance. If it does not match, the host is not considered at all when
establishing connections to the servers defined in the <Host> elements. Likewise, the
defaultRouteNoMatch attribute exists to omit a host from consideration if its regular
expression argument matches the default route.

© 2006-2009 EdgeWave Inc. 24 All Rights Reserved

<Host> Element Example

Consider the following verifier example:
<Vrfy version = "101.4635"

name = "My LDAP Verifier"
uid = "64378E86-A459-11DD-1273-09173F13E4C5">

 <LDAP>
 <Host defaultRouteMatch="12\.32\.1\.[0-9]+">10.111.1.12</Host>
 <Host defaultRouteNoMatch="12\.32\.1\.[0-9]+">112.11.64.244</Host>
 </LDAP>
</Vrfy>

Using this verifier, if the command ip route|grep default, returns:
default via 118.221.76.126 dev eth0

then connections will only be made to 112.11.62.244. However if the same command
returns:
default via 12.32.1.1 dev eth0

then connections will only be made to 10.111.1.12.

element: <HostListOrder>
Value: rotate/shuffle

Each time a new connection to a verification server is required, the list of potential hosts (the
set of <Host> elements) is subjected to one of the three <HostListOrder> algorithms:

 Static: (Default) Selects the first host from the list. If it is unsuccessful, it selects the
other hosts in order until one is successful.

 Rotate: Selects the next entry from the list of <Host> elements in a ring fashion.
 Shuffle: Randomly selects one entry from the list of <Host> elements.

Connect Elements Example: LDAP
The following example shows an LDAP verifier establishing up to 25 simultaneous
connections to the LDAP server on host 1.2.3.4. If an attempt to connect to that LDAP
server fails, only then will a connection to 1.2.3.5 be attempted. Thereafter, when new
connections are needed, 1.2.3.4 will still be tried first, but the established connection to
1.2.3.5 will remain in the pool for jobs to use.

If an attempt to establish a connection takes longer than five seconds, it is considered a failed
connection attempt. Likewise, if an established connection does not respond for more than
five seconds, that connection is shut down. When enumerating, the first available connection
in the pool of cached connections is chosen, and that connection alone is used to perform
the entire enumeration procedure:

© 2006-2009 EdgeWave Inc. 25 All Rights Reserved

<Vrfy version = "101.4635"
name = "My LDAP Verifier"
uid = "64378E86-A459-11DD-1273-09173F13E4C5">

 <LDAP>
 <BackendMax>25</BackendMax>
 <Host>1.2.3.4</Host>
 <Host>1.2.3.5</Host>
 <Timeout>5</Timeout>
 </LDAP>
</Vrfy>

Connect Elements Example: SMTP VRFY
The following example shows a Postfix SMTP VRFY verifier that establishes up to 10
simultaneous connections to the SMTP servers on hosts 5.6.7.8 and 5.6.7.9. Each time a new
connection is required, the application alternates the host.

If the connection to the host chosen by the application fails (or does not respond within ten
seconds), then the application tries the other host. Only if all hosts fail will the command that
requires the connection fail.
<Vrfy version = "101.4635"

name = "My SMTP VRFY Verifier"
uid = "64378E86-A459-11DD-1273-09173F13E4C5">

 <Postfix>
 <Host>5.6.7.8</Host>
 <Host>5.6.7.9</Host>
 <HostListOrder>Rotate</HostListOrder>
 </Postfix>
</Vrfy>

Connect Elements Example: DataBase
The following example shows a DataBase verifier that establishes up to 50 simultaneous
connections to the MySQL data base called email_addresses hosted on MySQL database
servers listening at 10.11.12.1, 10.11.12.2 and 10.11.12.3. Each time a new connection is
needed, a random one is selected from these three.

If a connection to the randomly selected host fails due to an error, then the application
randomly tries one of the other two hosts. If that one fails as well, the third and final host is
tried. Only if all three fail to connect properly will the pending command fail.

If two of the three hosts are unresponsive for some time, then the pool of connections
consists of connections to the one responsive host. The application will not renegotiate
connections to the failed hosts unless some of the cached connections for the functional host
fail or are shutdown due to idleness. Enumerations take place entirely on the first free cached
connection.
<Vrfy version = "101.4635"

name = "My MySQL Verifier"
uid = "64378E86-A459-11DD-1273-09173F13E4C5">

 <DataBase>
 <Vendor>mysql</Vendor>
 <DataBase>email_addresses</DataBase>
 <Host>10.11.12.1</Host>
 <Host>10.11.12.2</Host>
 <Host>10.11.12.3</Host>
 <HostListOrder>Shuffle</HostListOrder>
 </DataBase>
</Vrfy>

© 2006-2009 EdgeWave Inc. 26 All Rights Reserved

Connect Elements Example: Communigate
The following example shows a Communigate verifier that establishes up to 192 connections
to host 8.8.8.71 on TCP ports 106 and 601. It will try port 106 first and only if that
connection fails or takes longer than six seconds will it try the alternate port number 601.

If both ports fail or timeout, the pending command will fail. Once a connection is
established, it is maintained. When enumerating email addresses, up to 144 connections are
established and used by the enumeration process, leaving up to 48 connections available for
verification commands.
<Vrfy version = "101.4635"

name = "My Communigate Verifier"
uid = "64378E86-A459-11DD-1273-09173F13E4C5">

 <Communigate>
 <Timeout>6</Timeout>
 <BackendMax enumMax="75%">192</BackendMax>
 <Credentials>

<Username>zed</Credentials>
<Password>zed's dead</Password>

 </Credentials>
 <Host>8.8.8.71</Host>
 <Host>8.8.8.71:601</Host>
 </DataBase>
</Vrfy>

Connect Elements Example: Multi
The following example shows a Multi verifier that connects to many different LDAP
directories. A copy of each directory is hosted on one or more LDAP servers using
anonymous binding for each directory. When a request to verify an email address is received,
the first available cached connection to the host 1.2.3.4 or 1.2.3.5 is queried with search base
of dc=redcondor,dc=com using a one-second timeout.

If this query returns no hits, then the first cached connection to 1.2.3.6 is queried with search
base of dc=redcondor,dc=net using an eight-second timeout. If this query returns no hits
then the first cached connection to the host 1.2.3.7, 1.2.3.8 or 1.2.3.9 is searched. The search
base is the LDAP server's published default search base. If this query returns no hits, the
email address is not verified. If any one of the three searches times out or returns an error,
then a "failure to verify" error is reported for that address.

When establishing connections, this verifier allows only one active connection to either host
1.2.3.4 or 1.2.3.5. If that connection times out or has an error, the other server is tried. If an
error or timeout occurs during connection establishment to host 1.2.3.4 or 1.2.3.5, then the
other server will be tried immediately. If the error occurs during connection use, the pending
command fails.

This verifier also manages 18 separate connections to the LDAP server on host 1.2.3.6.
Lastly, this verifier manages up to three simultaneous connections across the host set 1.2.3.7,
1.2.3.8 or 1.2.3.9. It will always try 1.2.3.7 first. If that connection attempt fails, it tries 1.2.3.8.
Only if both 1.2.3.7 and 1.2.3.8 fail will it attempt a connection to host 1.2.3.9. All
connection attempts will have eight-second timeouts.

© 2006-2009 EdgeWave Inc. 27 All Rights Reserved

When enumerating email addresses, one active connection from host 1.2.3.4 or 1.2.3.5 is
used and, simultaneously, one active connection to 1.2.3.6 is used, and one active connection
to any of host 1.2.3.7, 1.2.3.8, or 1.2.3.9 is used. The result from all three directory services
are combined to yield the enumeration of this Multi verifier.
<Vrfy version = "101.4635"

name = "My LDAP Verifier"
uid = "64378E86-A459-11DD-1273-09173F13E4C5">

 <Multi>
<BackendMax>3</BackendMax>
<Timeout>8</Timeout>

 <LDAP>
<Host>1.2.3.4</Host>
<Host>1.2.3.5</Host>
<BackendMax>1</BackendMax>
<Timeout>1</Timeout>
<HostListOrder>Rotate</HostListOrder>
<BaseDN>dc=redcondor,dc=com</BaseDN>

 </LDAP>
 <LDAP>

<Host>1.2.3.6</Host>
<BackendMax>18</BackendMax>
<BaseDN>dc=redcondor,dc=net</BaseDN>

 </LDAP>
 <LDAP>

<Host>1.2.3.7</Host>
<Host>1.2.3.8</Host>
<Host>1.2.3.9</Host>

 </LDAP>
 </Multi>
</Vrfy>

Event Elements
Verifiers can have two repeating tasks that you can control using the events elements. These
events are periodic email address enumeration and periodic domain discovery. The frequency
of their occurrence is controlled by the <InterEnumTime> and <InterDiscTime> elements,
respectively.

The <InterEnumTime> and <InterDiscTime> represent the average length of time
between enumerations or discoveries. For example, if the <InterEnumTime> is set to 60
seconds, then the moment the enumeration completes a new enumeration will begin between
30 and 90 seconds later. Regardless of how small you set the <InterEnumTime>, there are
never two overlapping enumerations.

element: <InterEnumTime>
Value: positive integer

The <InterEnumTime> element controls the delay between enumerations. If set to zero,
then address enumeration will not occur.

© 2006-2009 EdgeWave Inc. 28 All Rights Reserved

For verifiers with periodic enumeration, all email addresses are retrieved from one of the
verification servers and stored in a cache of valid email addresses. This enumeration is
performed simultaneously from many servers in the case of a Communigate verifier, or from
each sub-verifier in a Multi verifier . This cache allows the application to respond instantly to
verification requests.

Although this address enumeration places considerable load on the verification servers, it can
shield servers from the severe load of a Directory Harvest Attacks (DHA). You can expect
enumeration of large LDAP servers to take up to ten minutes. If the enumeration procedure
encounters an error, the entire database of enumerated email addresses is immediately
discarded.

The following table summarizes the default <InterEnumTime> values for each verifier type.
Note that when defining a Multi verifier, the <InterEnumTime> element is not allowed
within a sub-verifier, and the default <InterEnumTime> is zero (disabled).

To enumerate a Multi verifier, you must explicitly request automatic enumeration by placing
an <InterEnumTime> element as a child of the <Multi> parent element. Enumeration of all
sub-verifiers of a Multi verifier is initiated in parallel.

Type Default <InterEnumTime>

Communigate 60

DataBase 30

LDAP 20

Multi 0 (disabled) with inheritance

RcptTo N/A

Postfix N/A

POP3 N/A

© 2006-2009 EdgeWave Inc. 29 All Rights Reserved

© 2006-2009 EdgeWave Inc. 30 All Rights Reserved

element: <InterDiscTime>
Value: positive integer

Periodic domain discovery is only used in a Multi verifier. For verifiers with periodic domain
discovery, each sub-verifier contacts each of its servers and generates a list of the domains
that each server services. Domain discovery is used to limit the sub-verifiers used when
verifying email addresses.

Before a domain discovery has been successfully completed, all requests to verify email
addresses within a Multi verifier are sent to every verification server. Once a domain
discovery is complete, a request to verify an email address is only sent to those sub-verifiers
that service the domain of that email address.

The default value of <InterDiscTime> is zero (no domain discovery).

Chapter 3

Verifier Types
The verifier type sub-element within the <Vrfy> element defines the type of verifier. The
following sections describe the broad classes of verifier, how they function, and the specific
XML elements used to configure them. Verifier types include:

 LDAP
 RcptTo
 Postfix (SMTP VRFY)
 Communigate
 DataBase
 POP3
 Multi

LDAP Verifiers
An <LDAP> sub-element defines connections to LDAP servers such as Microsoft Active
Directory, Zimbra's built-in LDAP server, the GroupWise built-in LDAP service, Lotus
Domino, and others. An <LDAP> sub-element requires at least one <Host> element.

The LDAP verifier configuration contains the following optional elements:

 <BaseDN>
 <Filter>
 <Canonical>
 <EnumFilter>

 <EnumFrom>
 <EnumTo>
 <EnumTest>
 <DiscFilter>

Property of EdgeWave Inc. Proprietary and Confidential

 <DiscAttr>
 <StripPfx>

Attribute: defaults

The LDAP verifier type contains several sets of default values for the above sub-elements.
You can select a specific set of defaults by including the attribute defaults in the <LDAP>
element itself. There are currently five sets of predefined values corresponding to five
different LDAP server types:

 Generic
 Active Directory
 GroupWise
 Zimbra
 Domino

If you do not specify the attribute defaults, then Generic is assumed. Regardless of the
LDAP type, when you include sub-element, the default value for that element is overridden.

About LDAP Searches
When verifying an email address, an <LDAP> verifier will issue an LDAP search command.
An LDAP search requires a BaseDN, a scope, and a filter. You can control which BaseDNs
are searched by providing a set of <BaseDN> elements.

If you do not provide the <BaseDN> elements, then the application will try to determine a
search base to use by querying the LDAP server Root DSE. The sub scope is always used.

The filter is defined in the <filter> element or the default filter is used if there is none.
You can also specify an <EnumFilter> element containing a search filter to use when
enumerating email addresses.

The verification command is supposed to find the canonical form of the requested address
(revealing aliases). But which of the multitude of attributes within an LDAP search result
record contains the primary SMTP address and which are the aliases?

There is no globally accepted standard, so you can solve the problem by configuring a list of
format strings that reference the LDAP record attributes to construct the canonical form.
LDAP verifiers accept a list of <Canonical> elements, each of which specifies one possible
canonical form for the email address.

When the record from a search result is received, each canonical-form template is populated
with information from that record. If any blanks cannot be filled, that canonical form did not
match. If all the given canonical forms fail to match, the whole record is considered a search
miss and the next record from the LDAP search is examined. The first record that matches
one of the defined canonical forms by binding every variable with attributes from the record
is the one returned to the application.

© 2006-2009 EdgeWave Inc. 32 All Rights Reserved

element: <BaseDN>
Value: distinguished name

The <BaseDN> element specifies the base distinguished name to use when searching for
valid user email addresses and enumerating addresses. You may have unlimited <BaseDN>
elements.

Any attempt to verify a user email address results in a separate LDAP search for each
BaseDN until the user is found. Therefore, placing the most common <BaseDN> at the top
of the list can gain a performance boost. You can supply a blank <BaseDN> to some LDAP
servers, such as GroupWise. If you provide no <BaseDN> element, then the application will
try the following attributes from RootDSE of the server:

 DefaultNamingContext
 one of the NamingContexts
 the server's name (dsaName)

To be eligible, a NamingContexts value must be the shortest non-empty NamingContexts
value that has either a dc or o component.

element: <Filter>
Value: LDAP query

The <LDAP> verifier supports one <Filter> element. This element specifies the LDAP
search filter to use to verify email addresses. The search is repeated for every BaseDN (in
order). The results of this search are a set of records which are then matched to the
<Canonical> forms.

Note: The LDAP filter Syntax is case insensitive. An asterisk (star
character (*)) denotes any span of characters.

The <Filter> element accepts the following placeholder variables:

 %D - The first domain component. For example, if you are verifying
"adamsmith@internal.redcondor.com", then %D is "internal".

 %u - The username of the email address being verified. For example, if you are verifying
"adamsmith@redcondor.com", then %u is "adamsmith".

 %d - The domain name of the email address being verified. For example, if you are
verifying "adamsmith@redcondor.com", then %d is "redcondor.com".

 %e - The equivalent of %u@%d . This greatly improves the filter speed, especially during
enumeration.

The default values for each type of LDAP server are:

© 2006-2009 EdgeWave Inc. 33 All Rights Reserved

Type Default LDAP Search Filter

Generic (mail=%e)

GroupWise (cn=%u)

ActiveDirectory (&(|(proxyAddresses=smtp:%e)(userprincipalname=%e)(mail=%
e))(!(msExchUserAccountControl=2)))

Zimbra (&(zimbraMailStatus=enabled)(|(mail=%e)(zimbraMailAlias=%e)
))

Domino
(&(|(objectClass=dominoGroup)(objectClass=dominoServerMail
InDatabase)(objectClass=person))(|(mail=%e)(&(mail=*@%d)(u
id=%u))(uid=%e)))

element: <Canonical>
The <Canonical> element is used when an LDAP directory has inconsistent attributes
across all records. For example, some records have a mail attribute, while others have a
proxyAddresses attribute.

The <Canonical> element specifies a template used by the application to construct the
email address from an LDAP search result. You can have multiple <Canonical> elements.
Each LDAP search can return a set of records. Each record contains many attributes, each
with a set of values.

The syntax for the <Canonical> element contains the literal text of the canonical form of
the email address, as well as the special sequence %{attribute_name} that references an
attribute in the LDAP record. Each variable reference is replaced with the value of the
LDAP record attribute with that name. The special sequence %{rciVRFYdomain} is replaced
with the domain from the original verification query.

For a <Canonical> element to match a record, all the attribute references must be bound to
a value from the record. If a <Canonical> element contains a reference to an attribute that
does not exist in the record, that record cannot match that <Canonical> element. When
examining each record the search returns, each <Canonical> element is tried in order. The
first match is the email address returned.

© 2006-2009 EdgeWave Inc. 34 All Rights Reserved

The default values for each type of LDAP server are:

Type Default LDAP Canonical Form(s)

Generic %{mail}

GroupWise %{mail}

ActiveDirectory %{mail}
%{proxyAddresses}

Zimbra
%{zimbraMailDeliveryAddress}
%{mail}
%{zimbraMailAlias}

Domino %{mail}

If you try to verify username@domain.com with a Zimbra LDAP verifier, the application
performs an LDAP search against each BaseDN with a search filter that finds all records that
have any zimbraMailStatus attributes equal to enabled, and that have either:

 a mail attribute with the value username@domain.com.
or

 a zimbraMailAlias attribute with the value username@domain.com.

Those records will each go through the following test:

1. If there is a zimbraMailDeliveryAddress attribute, then return the value of the first
such attribute as the canonical form.

2. If there is a mail attribute, then return the value of the first such attribute as the
canonical form.

3. If there is a zimbraMailAlias attribute, then return the value of the first such attribute as
the canonical form.

4. Otherwise, check the next record returned from the search.

You can put literal text in a <Canonical> element. For example, you could define an LDAP
verifier as:
<Vrfy version="101.4635">
 <LDAP>

<Host>1.2.3.4</Host>
<Filter>(mail=%u@%d)</Filter>
<Canonical>%{uid}@my.mailserver.com</Canonical>
<Canonical>%{mail}</Canonical>

 </LDAP>
</Vrfy>

The above verifier retrieves every record where the mail attribute is username@domain.com.
Then the first record that contains a uid attribute, the attribute is concatenated with the text
@my.mailserver.com and the result is returned.

© 2006-2009 EdgeWave Inc. 35 All Rights Reserved

In effect, the mail attribute is the alias for username@my.mailserver.com whenever there is a
uid attribute. If there is no uid attribute, then the mail attribute is the canonical form for
that mail address.

element: <StripPfx>
The <StripPfx> element strips off the prefix of an attribute before it is used in the
construction of an email address. It controls the <Canonical> variable binding step. Each
<StripPfx> element contains one <Attribute> and one <Prefix> sub-element.

sub-element: Attribute

The <Attribute> sub-element names an LDAP attribute to transform.

sub-element: Prefix

The <Prefix> element contains the prefix to strip off.

When trying to bind a <Canonical> variable that contains a reference to <Attribute>, if
the value of that <Attribute> begins with the <Prefix> text, that text is stripped before
substitution is done in the <Canonical> element. If the <Attribute> value does not
match the <Prefix>, then that attribute value cannot be used to replace the reference in the
<Canonical> element.

ActiveDirectory is the only server type with a default for <StripPfx>:
<StripPfx>
 <Attribute>proxyAddresses</Attribute>
 <Prefix>smtp:</Prefix>
</StripPfx>

The special checks for attribute prefixes defined by <StripPfx> elements are also applied
when performing enumerations.

element: <EnumFilter>
The <EnumFilter> element specifies the LDAP search filter used for address enumeration.
The search is repeated for each <BaseDN> element. If you do not specify the
<EnumFilter> element, then it is calculated from the <Filter> element as follows:

The enumeration search filter will be set to the contents of the <Filter> element,
except that instances of:

 %u@%d

 %u
 %d

are replaced by %A (in order).

© 2006-2009 EdgeWave Inc. 36 All Rights Reserved

The %A placeholder is initially set to *, resulting in the selection of any record for which the
requested attribute exists.

The following table shows the default <EnumFilter> elements for Zimbra, GroupWise, and
Active Directory:

Server Type Default

Zimbra (&(zimbraMailStatus=enabled)(|(mail=%A)(zimbraMailAlias=%A)))

GroupWise (objectclass=%A)

Active
Directory

(|(proxyAddresses=smtp:%A)(mail=%A))

Some LDAP servers have a limit on the number of records returned by any search. If the
server returns a special error code indicating too many search results, then the application
runs the search repeatedly, each time replacing, %A in order, with the following (separated in
this list by semicolons (;)):

a*; b*; c* … z*; 0*; 1* … 9*; _*; .*; -*

This substitution results in up to 39 separate searches. If any of these searches return the
"too many results" error code, then that particular search is divided 39 ways again. For
example if a search of (mail=s*) returns too many results, it would be retried as another 39
separate searches (mail=sa*) , (mail=sb*), and so on.

The set of splits for the %A placeholder is retained from one enumeration run to the next.
The split will not be re-merged unless the application is restarted or the verifier in question is
altered.

Some LDAP servers, such as GroupWise and ActiveDirectory, perform very poorly when
searched for attributes that do not have indices. Instead, use a broad filter as shown in the
table above.

element: <EnumTest>
In the case where a broad filter is used for enumeration, the <EnumTest> element is used as
a second filter by the application to narrow the search results to valid email addresses. Each
<EnumTest> element has <Attribute> and <Test> sub-elements.

sub-element: <Attribute>

The <Attribute> sub-element names an attribute to check.

© 2006-2009 EdgeWave Inc. 37 All Rights Reserved

sub-element: <Test>

The <Test> sub-element has an operator= attribute that must be one of the 12 operators
listed in the table below:

> != ge

< == le

>= gt eq

<= lt ne

The given operator is used to test the value of the named attribute against the literal value in
the <Test> sub-element.

Example:

ActiveDirectory LDAP verifiers have the following default <EnumTest> element:

<EnumTest>
 <Attribute>msExchUserAccountControl</Attribute>
 <Test operator="!=">2</Test>
</EnumTest>

Each record returned by the <EnumFilter> search is checked to see if it contains an
msExchUserAccountControl attribute with a value of 2. If so, the record is ignored.

element: <EnumTo>
When validating an email address, an LDAP verifier finds potential records using the
<Filter> element. No matter which clause within the filter matched, each record returned
is treated equally. Each record is matched against the canonical forms in order. The first
canonical form that matches is returned. Therefore, unless the address to be validated
happens to match the canonical form that the verifier returns, it is automatically an alias.

In contrast, the enumeration filter, defined in the <EnumFilter> element, produces every
record that might contain email addresses. Any record could contain many email addresses,
which leaves open the question "which one is the true canonical form and which are the
aliases?" The <EnumFrom> and <EnumTo> elements contain this information.

If you do not specify <EnumFrom> and/or <EnumTo>, then their values are the same as the
set of <Canonical> elements.

© 2006-2009 EdgeWave Inc. 38 All Rights Reserved

Whenever a record is returned from the <EnumFilter> search, two sets of <Canonical>
forms are matched against the record: the <EnumFrom> and the <EnumTo> elements. The
<EnumTo> matches in a manner similar to the <Canonical> element. The first set of
attributes that can be bound to all the placeholders in the <EnumTo> element selects the
email address for that record. The <StripPfx> element rules are also applied to this
mapping. Each <EnumTo> element is tried in series until one of them can fill in all the
blanks.

The <EnumTo> element differs from the <Canonical> element when it contains the
%{rciVRFYdomain} placeholder. For verification, that placeholder is populated with the
domain of the email address you are verifying. However, when enumerating, that placeholder
is replaced with every domain that the verifier services.

element: <EnumFrom>
Unless you use %{rciVRFYdomain}, each record in the search result will produce a single
canonical form email address from the set of <EnumTo> elements. This email address can
have many aliases. The entire set of matches created for all the <EnumFrom> elements is
taken as the set of all aliases in the record.

So, rather than taking the first <EnumFrom> element that can match all its attributes, it
includes every match. This rule also applies to attributes. For example, if an <EnumFrom>
element has an attribute placeholder and the record contains three different values, then
<EnumFrom> will generate three aliases for that record. LDAP Example 3 (on page 41) shows
the <EnumFrom> element.

element: <DiscFilter>
Domain discovery is the process by which an LDAP sub-verifier within a Multi verifier
identifies which domains the LDAP server services by issuing a special LDAP search. The
<DiscFilter> element contains the LDAP filter for this search.

The search is repeated for each <BaseDN> element. The results are collected into a set of
domains according to the <DiscAttr> elements. There is no default for the <DiscFilter>
element because many LDAP servers do not contain specific records with this information.

element: <DiscAttr>
When performing domain discovery, an LDAP verifier performs an LDAP search using the
<DiscFilter> search filter. The records returned by the search are examined for each
LDAP attribute named in a <DiscAttr> element. The full text value of all attributes are
added to the set of discovered domains (duplicates are suppressed).

The following example shows an LDAP verifier that inspects the name and suffixes
attributes of records that have an objectClass=domainname attribute:
<Vrfy version="101.4635">

© 2006-2009 EdgeWave Inc. 39 All Rights Reserved

 <Multi>
 <InterDiscTime>20</InterDiscTime>
 <LDAP>

<DiscFilter>(objectclass=domainname)</DiscFilter>
<DiscAttr>name</DiscAttr>
<DiscAttr>suffixes</DiscAttr>

 </LDAP>
 </Multi>
</Vrfy>

LDAP Example 1
The following example shows an LDAP verifier with a custom search filter and custom mail
address in canonical form. For each email user, if you verify email_user@address.com and
there is a cn (common name) attribute with the value email_user, then it will return
email_user@mycorp.com.

<Vrfy name="mycorp" version="101.4635">
 <LDAP>

<Credentials>
<Username>cn=ldapquery,o=mycorp</Username>
<EncPass>53616c4218a60056</EncPass>

</Credentials>
<Host secure="true">people.mycorp.com</Host>
<BaseDN>o=mycorp</BaseDN>
<Filter>(cn=%u)</Filter>
<Canonical>%{cn}@mycorp.com</Canonical>

 </LDAP>
</Vrfy>

LDAP Example 2
The following example shows an LDAP verifier with a custom search filter, many canonical
forms to try, a prefix stripper,. and two LDAP server hosts to try. It is similar to an
ActiveDirectory verifier that also has email addresses stored in the userPrincipalName
attribute.

<Vrfy name="myschool" version="101.4635">
 <LDAP>

<Credentials>
<Username>redcondor@myschool.edu</Username>
<EncPass>53616c74374218a60056</EncPass>

</Credentials>
<Host defaultRouteMatch="116\..*">116.88.224.99</Host>
<Host defaultRouteNoMatch="116\..*">10.10.60.13</Host>
<BaseDN>DC=myschool,DC=edu</BaseDN>
<Canonical>%{userPrincipalName}</Canonical>
<Canonical>%{mail}</Canonical>
<Canonical>%{proxyAddresses}</Canonical>

<Filter>(&(|(proxyAddresses=smtp:%u@%d)(userPrincipalName=%u@%d)(mail=%u@%d)
)(!(msExchUserAccountControl=2)))</Filter>

<EnumFilter>(|(proxyAddresses=smtp:%u@%d)(userPrincipalName=%u@%d)(mail=%u@%d))<
/EnumFilter>

<EnumTest>
<Attribute>msExchUserAccountControl</Attribute>
<Test operator="!=">2</Test>

</EnumTest>
<StripPfx>

<Attribute>proxyAddresses</Attribute>
<Prefix>smtp:</Prefix>

</StripPfx>
 </LDAP>
</Vrfy>

© 2006-2009 EdgeWave Inc. 40 All Rights Reserved

LDAP Example 3
The following example shows an LDAP verifier where <EnumFrom> is used to define the
email aliases for email address enumeration.

 <Vrfy name="mycorp" uid="791DA3AC-7A84-407C-769C-EA43AC53BB75
version="101.4635">

<LDAP>
<InterEnumTime>60</InterEnumTime>
<Host secure="true">people.mycorp.com</Host>
<Credentials>

<Username>uid=red_condor,ou=people,o=mycorp,o=com</Username>
<EncPass>53616c746564d6d42b</EncPass>

</Credentials>
<BaseDN>ou=People,o=mycorp,o=com</BaseDN>
<Canonical>%{uid}@mycorp.com</Canonical>

<Filter>(&(mycorpMailLocalAddress=%u@%d)(!(mycorpMailRoutingAddress=:fail:))
)</Filter>

<EnumFrom>%{mycorpMailLocalAddress}</EnumFrom>
</LDAP>

 </Vrfy>

SMTP Verifiers
A <RcptTo>, <Postfix>, and <POP3> sub-element in the <Vrfy> element defines
connections to SMTP servers, such as Postfix, Microsoft Exchange server, Communigate
MTA, Zimbra MTA, Lotus Domino, and many others. A <RcptTo>, <Postfix>, or a
<POP3> sub-element requires at least one <Host> element.

The primary difference between <RcptTo>, <Postfix>, and <POP3> style verifiers is the
set of commands sent to the SMTP server:

 The <RcptTo> submits the RCPT TO command to the server and checks the response
code.

 The <Postfix> style verifier sends the VRFY command and checks the response code.
 The <POP3> sends the APOP command and checks the response code.

element: <Threshold>
Value: positive integer

The <Threshold> element specifies the maximum positive response code. If an SMTP
response code is received that is greater-than or equal to this number, then it is treated as a
failure. Otherwise, it is verified.

© 2006-2009 EdgeWave Inc. 41 All Rights Reserved

element: <Errmap>
The <Errmap> element allows you to map SMTP responses to new response codes based on
a free-form regular expression. This mapping is useful for some servers that return good
(200-range) responses for partial failures. In particular, the rule helps when the SMTP server
is willing to forward the mail for you. The default value is none.

Each <Errmap> element must contain one <Text> and one <Code> sub-element.

sub-element: <Text>

The <Text> element contains a Perl-compatible regular expression to be matched against
each response line from the SMTP server.

sub-element: <Code>

The <Code> sub-element must contain a three digit integer.

If the regular expression from the <Text> element matches, then the SMTP response code is
treated as if it had been the number in the <Code> sub-element. This value is then compared
to the <Threshold> element of the verifier to determine if the response is a success or
failure.

element: <UseBrackets>
Value: true/false

The <UseBrackets> element is only valid for <RcptTo> verifiers. The default value is false.
If set to true, angle brackets are used to surround the email address. For example, the SMTP
command:
rcpt to:email@domain

will instead be sent as:
rcpt to:<email@domain>

Some SMTP servers require brackets, while others do not.

SMTP Examples
The following is an example of a <RcptTo> verifier with a shortened timeout and
<UseBrackets> enabled:

<Vrfy uid="791DA3AC-7A84-407C-769C-EA43AC53BB75" version="101.4635">
 <RcptTo>
 <Host>28.66.33.251</Host>
 <Timeout>20</Timeout>
 <UseBrackets>true</UseBrackets>
 </RcptTo>
</Vrfy>

© 2006-2009 EdgeWave Inc. 42 All Rights Reserved

The following example shows a <Postfix> verifier that randomly selects 1 of 11 mail
servers to connect to, waits 20 seconds for the responses, and treats any response from the
server that contains the words "but will relay" as if it were a code 551 response instead (it will
not verify the requested address).

<Vrfy uid="A779050F-8F43-C556-E119-800789F83322" version="101.4635">
 <Postfix>
 <Errmap>

<Code>551</Code>
<Text>but\s+will\s+relay</Text>

 </Errmap>
 <HostListOrder>shuffle</HostListOrder>
 <Host>131.81.42.5</Host>
 <Host>131.81.42.6</Host>
 <Host>131.81.42.7</Host>
 <Host>131.81.42.8</Host>
 <Host>131.81.42.9</Host>
 <Host>131.81.42.10</Host>
 <Host>131.81.42.11</Host>
 <Host>131.81.42.12</Host>
 <Host>131.81.42.13</Host>
 <Host>131.81.42.14</Host>
 <Host>131.81.42.15</Host>
 <Timeout>20</Timeout>
 </Postfix>
</Vrfy>

The following example shows a <POP3> verifier that will attempt to use TLS during the
communication with the verification server.
<Vrfy uid="A779050F-8F43-C556-E119-800789F83311" version="101.3807">
 <POP3>
 <Host secure="trystarttls">smtp.domain.net</Host>
 <Comment>Used for POP authentication.</Comment>
 </POP3>
</Vrfy>

Communigate Verifier
The <Communigate> sub-element in the <Vrfy> element defines connections to the
Communigate Administrative Command Line Interface (CLI), which normally listens on
TCP port 106. Using the Communigate verifier is usually the most efficient way to interact
with a Communigate server. Communigate is currently the only verifier type to take
advantage of parallel enumeration, in which a large number of verification servers share the
work of enumerating the email address on the server.

It is important to note that many Communigate servers close TCP connections when too
many connections are attempted. It is easy to overwhelm the Communigate server default
connection limit (5). Coupled with a long <Timeout> setting, the result can appear as an
application malfunction. For this reason, the default <BackendMax> element of
Communigate verifiers is quite small.

Some Communigate installations can handle many hundreds of simultaneous connections.
For such sites, enumeration can be completed in a reasonable amount of time by using
parallel enumeration across a very large set of connections (100 to 200).

© 2006-2009 EdgeWave Inc. 43 All Rights Reserved

The <Communigate> sub-element requires the following elements:

 At least one <Host> element
 One <Credentials> element

Communigate Example
The following is an example of a Communigate verifier with a maximum of 9 connections to
the one Communigate server at 38.16.99.4. Eight of those collections are allowed for
enumeration use. The password is sent in encrypted format.
<Vrfy version = "101.4635"

name = "My Communigate Verifier"
uid = "5903BBD8-A30A-B384-B854-96B1DF65AB6A">

 <Communigate>
<BackendMax enumMax="8">9</BackendMax>
<Credentials>

<Username>redcondor@mailhost.mycompany.net</Username>
<EncPass>53616c746374218a60056</EncPass>

</Credentials>
<Host>38.16.99.4</Host>

 </Communigate>
</Vrfy>

Database Verifiers
The <DataBase> sub-element of the <Vrfy> element defines connections to SQL based
database servers over TCP sockets. Red Condor supports both MySQL and PostgreSQL.

The <DataBase> sub-element requires the following elements:

 One <Vendor> element
 At least one <Host> element
 One <VrfyQuery> element
 One <DBName> element.

Timeouts for DataBase verification servers are not implemented.

For each type of command that the application will execute, a single SQL statement must be
defined in one of the elements <VrfyQuery>, <AuthQuery>, <DiscQuery>, and
<EnumQuery>. These <DataBase>-specific elements are described below. The queries accept
standard placeholders where data from (or calculated from) the request will be substituted.
Each of the query types also has an expected set of columns that should be returned.

Query Placeholders
When writing SQL statements for the four query elements, use placeholders anywhere the
actual data from an application command will be inserted. Do not surround the placeholder
in quotes for string values. Quoting will be automatic, using prepared statements.

© 2006-2009 EdgeWave Inc. 44 All Rights Reserved

Placeholder Description

%?U Username portion of an email address for verification or
authorization commands.

%?D Domain portion of an email address (after the @ sign) in
verification or authorization commands.

%?E The full email address in verification or authorization commands
(user@domain)

%?C Encrypted form of the password, calculated with a random salt
each time an authorization command is received.

%?M md5sum of the password, calculated each time an auth command
is received.

element: <Vendor>
The <Vendor> element specifies the type of database. This element is required. The currently
supported database vendors are:

 MySQL
 Postgres
 SQLite (reserved for testing purposes)

element: <DBName>
The <DBName> element specifies the name of the database to connect to. It is required.

element: <VrfyQuery>
The <VrfyQuery> element is the SQL query issued for email address verification. You will
likely need the placeholders %?U, %?D, and/or %?E. When an email address is not verified,
the query should return no rows. When an email address is verified by the query, one row is
returned.

The first column is required and holds the canonical form of the requested email address.
This may be equal to the requested email address. The second column is optional and returns
a unique ID to be used when two-step authentication is performed (two-step is not normally
used with DataBase verifiers).

The following snippet shows a very simple <VrfyQuery> element that ignores aliases and
unique IDs:

<VrfyQuery>
SELECT email FROM emails WHERE email=%?E
</VrfyQuery>

© 2006-2009 EdgeWave Inc. 45 All Rights Reserved

element: <AuthQuery>
The <AuthQuery> element is the SQL query issued for login authentication. You will need
the placeholders %?U, %?D, and/or %?E, as well as either %?C or %?M. The query returns
one or zero rows. When zero rows are returned, the authentication fails.

When one row is returned there are two potential columns. The first holds the UNIX-style
encrypted password. The second is a Boolean that is true if the authentication has succeeded.
If the Boolean is false, and there is a non-NULL value in the first column, the application
compares the password from the authentication command to the encrypted one that came
from the query. If they match, then the authentication succeeds.

It is important to construct your <AuthQuery> so that plaintext passwords are not passed
over the wire to the database server. Most database connections are not encrypted and can
easily expose credentials if you are careless with your SQL. For this reason, there is no
placeholder for the plaintext password received in the authentication command.

The proper way to check a database of encrypted passwords is to simply return only the first
column. The proper way to check a database of plaintext passwords is to send the encrypted
password in your SQL and compare it to an SQL function call that encrypts the plaintext
column on the database server. This method is slow, but secure. The correct way to query a
database with both kinds of data is to do both and return both columns.

The following snippet shows a very simple <AuthQuery> element that returns the encrypted
user password from a password table:

<AuthQuery>
 SELECT crypted
 FROM crypted_passwords
 WHERE mail_domain=%?D AND username=%?E
</AuthQuery>

The next snippet shows a method to write your <AuthQuery> element to check plaintext
passwords on a MySQL server (other servers have different SQL functions available). Note
that the first column (encrypted password) is always NULL and that the second column is
the Boolean result of a comparison between the encrypted password (which is sent over the
wire) and the encrypted version of the plaintext password (which is calculated on the server
side). The calculation of the encrypted password on the SQL server uses the supplied
encrypted password as a salt, which is standard practice (the prefix of the encrypted form
holds the salt bits).

<AuthQuery>
 SELECT NULL, encrypt(cleartext_password,%?C)=%?C
 FROM plain_passwords
 WHERE user_email=%?E
</AuthQuery>

© 2006-2009 EdgeWave Inc. 46 All Rights Reserved

element: <DiscQuery>
The <DiscQuery> element is the SQL query issued to find all unique domains that are
serviced on the verification server. This list of commands must include any domain (such as
an alias) for which the server can ever successfully verify an email address. The query should
return one row per domain, each row containing a single column containing the text of the
domain name.

The following code snippet shows how to retrieve the unique list of domains from a table
that has emails already separated into a user column and a domain column:

<DiscQuery>
SELECT DISTINCT domain FROM mail_table
</DiscQuery>

The next code snippet shows how to retrieve the unique list of domains from a table which
has a column of full email addresses:

<DiscQuery>
SELECT DISTINCT mid(email_addr, instr(email_addr,'@')+1)
 FROM email_table
</DiscQuery>

element: <EnumQuery>
The <EnumQuery> element is the SQL query to find all email addresses the database server
will verify. The response should be one row for each email address and one for each alias.
The columns of each row can contain:

 The email address or alias to be verified (the address which will be the argument of a
verification command).

 The primary SMTP address. If this is non-NULL, then the first column contains an alias.
 The unique ID for that email address to be used in two-phase authentication. If NULL,

two-phase authentication cannot be performed using enumerated data.
 The UNIX-style encrypted form for the user password. If NULL, authentication

commands must use the <AuthQuery> element to check the password. If this is non-
NULL, then authentication commands can be completed entirely within the application
(after an enumeration has completed successfully). DataBase verifiers are the only type of
verifier that can use internal authentication data to avoid querying the verification server.
Do not create an <EnumQuery> element with SQL that will transport unencrypted
passwords.

The following code snippet builds an enumeration from a table of email addresses and a table
of aliases. There are no unique IDs nor are there passwords:

© 2006-2009 EdgeWave Inc. 47 All Rights Reserved

<EnumQuery>
SELECT email_aliases.from_email AS Lookup,

email_accounts.email AS Aliased_To
 FROM email_accounts INNER JOIN email_aliases

ON email_accounts.email = email_aliases.to_email
UNION
 SELECT email,NULL
 FROM email_accounts;
</EnumQuery>

DataBase Examples
The following example shows a <DataBase> verifier that connects to the MySQL database
named "customers" on TCP port 3306 (mydbserver.mycompany.net:3306) using username
"redcondor" with a password. This verifier supports only the verification command.

<Vrfy uid="1874B47D-A461-8DB1-B897-D9B6805CD9CD" version="101.4635">
 <DataBase>
 <Vendor>mysql</Vendor>
 <DBName>customers</DBName>
 <Host>mydbserver.mycompany.net</Host>
 <Credentials>

<Username>redcondor</Username>
<EncPass>53616c7465645f4218a60056</EncPass>

 </Credentials>
 <VrfyQuery>

SELECT A.email_address, A.row_id
FROM email_table A, email_aliases B
WHERE A.email_address=%?E

OR
(B.alias=%?E AND B.id=A.id)

 </VrfyQuery>
 </DataBase>
</Vrfy>

The following example shows a MySQL database verifier called "email_database". The
database has two tables, "email_accounts" and "passwords". The "email_accounts" table has
"id" and "address" columns. The passwords table has an "id" column which is a foreign key
to the "id" column of the "email_accounts" table and a "password" column containing the
unencrypted password for that user id.

Using enumeration, it constructs a result set containing encrypted passwords on-the-fly.
There are no email aliases supported by this database, hence the NULL in the second column
of the <EnumQuery> result set.

© 2006-2009 EdgeWave Inc. 48 All Rights Reserved

<Vrfy uid="C2EDEE82-B8B4-0FFE-93C6-B49ABB3D3B0B" version="101.4635">
 <DataBase>
 <Vendor>mysql</Vendor>
 <DBName>email_databae</DBName>
 <Host>mysql.mycompany.com</Host>
 <Credentials>

<Username>redcondor</Username>
<EncPass>53616c7465645f218a60056</EncPass>

 </Credentials>
 <VrfyQuery>

SELECT address,id
FROM email_accounts
WHERE address=%?E

 </VrfyQuery>
 <AuthQuery>

SELECT NULL,encrypt(passwords.password,%?C)=%?C
FROM email_accounts LEFT JOIN passwords

ON email_accounts.id=passwords.id
WHERE email_accounts.address=%?E

 </AuthQuery>
 <DiscQuery>

SELECT DISTINCT mid(address, instr(address,'@')+1)
FROM email_accounts

 </DiscQuery>
 <EnumQuery>

SELECT email_accounts.address,
NULL,
email_accounts.id,
encrypt(passwords.password,rpad(conv(rand()*32674,10,16), 2,'x'))

FROM email_accounts LEFT JOIN passwords
ON email_accounts.id = passwords.id

 </EnumQuery>
 </DataBase>
</Vrfy>

Multi Verifier
A <Multi> element is a sub-element of the <Vrfy> element. It contains any number of
<LDAP>, <RcptTo>, <Postfix>, <Communigate>, and <DataBase> sub-verifiers. When a
request to verify an email address is received by a Multi verifier, it queries each of its sub-
verifiers in their defined order. Use a Multi verifier whenever you have one or more domains
serviced by more than one server.

For example, a school might use a student-administered LDAP server to handle all the
student email addresses. There is a faculty LDAP server to handle email addresses for the
employees. They both require different credentials to bind to each server, and they each use a
different list of BaseDNs to search. Yet, when a request to verify an email address comes in,
it always contains "@school.edu". You need a single verifier to be mapped to the school.edu
domain that searches each of the subordinate verifiers in turn. Multi verifiers do this.

To create a Multi verifier, wrap the sub-verifiers inside of <Multi> ... </Multi> tags in a
single verifier. The <InterDiscTime> and <InterEnumTime> elements are only allowed as
child elements of a Multi verifier, no other verifier type or sub-verifier can contain these
elements.

The following elements can be used both as children of a sub-verifier and also as children of
the <Multi> verifier itself: <Timeout>, <BackendMax>, and<BackendIdleTime>.

© 2006-2009 EdgeWave Inc. 49 All Rights Reserved

These elements are inheritable. This means that if a Multi verifier specifies a value for one of
these elements, then all sub-verifiers that do not also specify a value (called overriding the
inheritance) will inherit the value of the parent <Multi> element. In this way you can set, for
example, a <Timeout> used by all the sub-verifiers in the <Multi> using only a single
<Timeout> element as a child of the <Multi> element itself.

The behavior of the <InterEnumTime> element is different in Multi verifiers. Without this
element, it is assumed that all the sub-verifiers have an <InterEnumTime> of 0 (zero). That
is, enumeration is disabled by default on all the sub-verifiers. Because no sub-verifier is
allowed to have the <InterEnumTime> element, the only way to get enumeration of sub-
verifiers is to enumerate all sub-verifiers.

Sub-Verifier Attributes
The optional and service attributes apply to all sub-verifiers.

Attribute: optional

Value: true/false

When a verifier is used as a sub-verifier, you may add the optional attribute in the sub-
verifier element (such as, <LDAP> or <DataBase>). The optional attribute is used to cause
the Multi verifier to ignore errors during lookup and proceed to the next sub-verifier.
Without this argument, a server error (such as lost connection to the LDAP server, or
timeout to the SMTP server) results in a lookup failure because without the ability to query
all the sub-verifiers, a negative verification response cannot be guaranteed correct.

On the other hand, in the school.edu example, if you set the student LDAP server as
optional="true" and that LDAP server crashes, then all the student email addresses will
appear to be invalid because the faculty LDAP server would report them as bad email
addresses. Only mark sub-verifiers as optional if they are not needed to ensure the validity of
a verification request.

Attribute: service

Value: omit/verify/all

Sub-verifiers can also have a service attribute. The default is all. When set to
service="omit" the results of address verification are inverted. That is to say, if verifying
email@domain and the sub-verifier finds a match, then the Multi verifier will not search
subsequent sub-verifiers and will report the address as not-verified (550).

Conversely, when an email address is not matched by the service="omit" verifier, then the
search continues with the next sub-verifier. Placing a sub-verifier with service="omit" as
the last verifier will therefore have no effect. With the service="verify" argument, that
particular sub-verifier is only used for verification, and is ignored when processing
authentication requests. When the service attribute is set to all, then the sub-verifier is used
for both verification and authentication requests.

© 2006-2009 EdgeWave Inc. 50 All Rights Reserved

Attribute: enumerate

Value: true/false

The enumerate attribute determines whether or not to enable enumeration for the sub-
verifier.

Element <Domain>
Sub-verifiers can have child <Domain> elements that force them to be used only when the
domain being queried matches one of the <Domain> elements. For example, a Multi verifier
mapped to domains a.com, b.com, and c.com.

If it has two sub-verifiers, you could assign domains a.com and b.com to be handled by the
first sub-verifier and domains b.com and c.com to be handled by the second sub-verifier.
Then when a request to verify an email address in a.com is received, only the first sub-verifier
will be consulted.

When a request to verify an address in the b.com domain is received, then both sub-verifiers
will be consulted (in order). Lastly, emails in the c.com domain will only search the second
sub-verifier. See Multi Verifier Example 2 (on page 52) for more information.

Multi Verifier Example 1
The following Multi verifier contains two LDAP sub-verifiers, each one with a primary and
backup server, and a list of BaseDNs to search. Both use default queries for Active Directory
servers.

In this Multi verifier, the search request will first be sent to host 216.141.147.111 (or
216.141.147.110 if 216.141.147.111 is unavailable). If a match is found, the result is that the
email address is verified. No further search is performed.

If no match is found, then host 216.141.147.113 (or 216.141.147.112 if .113 is unavailable) is
tried. Only if this query also fails will the address be reported as not verified. Both of the sub-
verifiers will be enumerated, on-average, every 50 minutes.

Because this Multi verifier does not contain an <InterDiscTime> element, the Multi verifier
is unaware of which domains are serviced by each sub-verifier and all searches will try the
first sub-verifier. If there is no match, it searches the second sub-verifier. If any sub-verifier
has an error, the verification query returns an error.

© 2006-2009 EdgeWave Inc. 51 All Rights Reserved

<Vrfy name="ben``"
uid="64378E3C-A459-11DD-1273-09173F13E4C5"

 version="101.4635">
 <Multi>

<InterEnumTime>50</InterEnumTime>
<LDAP defaults="ActiveDirectory">

<Host>216.141.147.111</Host>
<Host>216.141.147.110</Host>
<Credentials>

<Username>Red Condor</Username>
<EncPass>53616c218a60056</EncPass>

</Credentials>
<BaseDN>OU=ADC Staging,DC=ben,DC=pri</BaseDN>
<BaseDN>OU=Adjunct Faculty,DC=ben,DC=pri</BaseDN>
<BaseDN>OU=BEN Faculty,DC=ben,DC=pri</BaseDN>
<BaseDN>OU=BEN Staff,DC=ben,DC=pri</BaseDN>
<BaseDN>OU=BEN Technical,DC=ben,DC=pri</BaseDN>
<BaseDN>OU=Service Accounts,DC=ben,DC=pri</BaseDN>
<BaseDN>OU=Student Workers,DC=ben,DC=pri</BaseDN>
<BaseDN>CN=Users,DC=ben,DC=pri</BaseDN>
<BaseDN>CN=Microsoft Exchange System Objects,DC=ben,DC=pri</BaseDN>

</LDAP>
<LDAP defaults="ActiveDirectory">

<Host>216.141.147.113</Host>
<Host>216.141.147.112</Host>
<Credentials>

<Username>Red Condor</Username>
<EncPass>53616c7465644218a60056</EncPass>

</Credentials>
<BaseDN>OU=ActiveStudents,DC=stuben,DC=ben,DC=edu</BaseDN>
<BaseDN>OU=NewStudents,DC=stuben,DC=ben,DC=edu</BaseDN>
<BaseDN>CN=Microsoft Exchange System

Objects,DC=stuben,DC=ben,DC=edu</BaseDN>
</LDAP>

 </Multi>
</Vrfy>

Multi Verifier Example 2
The following Multi verifier will search only ldap://1.2.3.4 when the query is user@a.com. It
will search only ldap://1.2.3.5 when the query is user@c.com. It will search first
ldap://1.2.3.4. Then, if no match is found, it will search ldap://1.2.3.5 when the query is
user@b.com.

<Vrfy version="101.4635">
 <Multi>

<InterEnumTime>50</InterEnumTime>
<LDAP defaults="Generic">

<Domain>a.com</Domain>
<Domain>b.com</Domain>
<Host>1.2.3.4</Host>

</LDAP>
<LDAP defaults="Generic">

<Domain>b.com</Domain>
<Domain>c.com</Domain>
<Host>1.2.3.5</Host>

</LDAP>
 </Multi>
</Vrfy>

© 2006-2009 EdgeWave Inc. 52 All Rights Reserved

Multi Verifier Example 3
In the following Multi verifier, there are again two LDAP directories to search. Neither one
will be enumerated because the <Multi> parent is missing the critical <InterEnumTime>
element. When this Multi verifier is loaded on a server with a default route matching
172.30.1.*, then for each verification request, it will query server 10.111.1.12 then 10.10.1.243
if there was no match found.

When the same Multi verifier is loaded on a server that does not have a default route in
172.30.1.*, then it will try to connect to 168.11.164.244. When no match is found for an
email address, the search will be sent to 168.11.164.243.

<Vrfy version="101.4635">
 <Multi>

<LDAP defaults="ActiveDirectory">
<Host defaultRouteMatch="172\.30\.1\.[0-9]+">10.111.1.12</Host>
<Host defaultRouteNoMatch="172\.30\.1\.[0-9]+">168.11.164.244</Host>
<credentials>

<Username>redcondor@qqab.local</Username>
<EncPass>53616c74b374218a60056</EncPass>

</credentials>
<BaseDN>DC=sites,DC=QQAB,DC=local</BaseDN>

</LDAP>
<LDAP defaults="ActiveDirectory">

<Host defaultRouteMatch="172\.30\.1\.[0-9]+">10.10.1.243</Host>
<Host defaultRouteNoMatch="172\.30\.1\.[0-9]+">168.11.164.243</Host>
<credentials>

<Username>redcondor@qqab.local</Username>
<EncPass>53616c7465645374218a60056</EncPass>

</credentials>
<BaseDN>DC=QQAB,DC=local</BaseDN>

</LDAP>
 </Multi>
</Vrfy>

Multi Verifier Example 4
The following Multi verifier uses three separate sub-verifiers. One is a Communigate server,
two are Active Directory servers. All three will be enumerated on-average, every forty
minutes. Also, on average, every 20 minutes all three will be queried to learn the set of
domains they service.

The Communigate server uses up to 210 simultaneous connections for general use, of which
200 can be devoted to an enumeration. The two LDAP servers will each never have more
than 10 simultaneous connections owing to the inherited <BackendMax> child of the
<Multi> element.

When verifying against this Multi verifier:

 The set of domains serviced by each of the sub-verifiers will be queried the moment the
verifier is loaded from the database. In the LDAP verifiers, the domain discovery will be
performed by finding every unique uPNSuffixes and name attribute for all records
returned by searching with the filter (objectclass=organizationalUnit). The
Communigate verifier uses default searches to find all the domains which it services.

© 2006-2009 EdgeWave Inc. 53 All Rights Reserved

 For each query, only those sub-verifiers that have reported that they service the queried
domain will be searched, the others will be treated as though they were not present.

 When searching the Communigate sub-verifier:
 If there is a verification server error (for example "TCP connection refused"), then an

error is returned.

 If the name is found, then the query succeeds.

 If the name is not found:

 If no other verifiers service the domain, then the query fails.

 Otherwise, the next verifier that services the domain will be tried.
 When searching the first LDAP verifier:

 If the name is found, then the query succeeds.

 If the name is not found or if there is an error (because it is marked "optional"):

 If the second LDAP sub-verifier services the domain, then it will be searched.

 Otherwise, the query fails.
 When searching the last LDAP verifier:

 If there is an error, then the query temporarily fails.

 If the name is found, then the query succeeds.

 Otherwise the query fails.

© 2006-2009 EdgeWave Inc. 54 All Rights Reserved

<Vrfy version="101.4635">
 <Multi>

<InterDiscTime>20</InterDiscTime>
<InterEnumTime>40</InterEnumTime>
<BackendMax>10</BackendMax>
<Communigate>

<BackendMax enumMax="200">210</BackendMax>
<Host>208.42.176.203</Host>
<Credentials>

<Username>redcondor</Username>
<EncPass>53616c74656474218a60056</EncPass>

</Credentials>
</Communigate>
<LDAP defaults="ActiveDirectory" optional="true">

<Host secure="true">216.245.171.6</Host>
<Credentials>

<Username>cn=_exchange,ou=Customers,dc=agiliti,dc=net</Username>
<EncPass>53616c7465645218a60056</EncPass>

</Credentials>
<BaseDN>ou=Customers,DC=agiliti,DC=net</BaseDN>
<DiscFilter>(objectclass=organizationalUnit)</DiscFilter>
<DiscAttr>uPNSuffixes</DiscAttr>
<DiscAttr>name</DiscAttr>

</LDAP>
<LDAP defaults="ActiveDirectory">

<Host secure="true">208.42.184.97</Host>
<Credentials>

<Username>CN=Red Condor,CN=Users,DC=vcollaborate,DC=com</Username>
<EncPass>53616c746564b374218a60056</EncPass>

</Credentials>
<BaseDN>OU=Hosting,DC=vcollaborate,DC=com</BaseDN>
<DiscFilter>(objectclass=organizationalUnit)</DiscFilter>
<DiscAttr>uPNSuffixes</DiscAttr>
<DiscAttr>name</DiscAttr>

</LDAP>
 </Multi>
</Vrfy>

© 2006-2009 EdgeWave Inc. 55 All Rights Reserved

Appendix A

Appendix A: Verifier Feature
Implementation Status

The following chart summarizes the feature implementation status for the various verifiers:

Type Verification Authentication Enumeration Discovery

LDAP yes yes yes (parallel
planned) yes

RcptTo yes planned no no

Postfix yes planned no no

Communigate yes yes yes (parallel) yes

DataBase yes yes yes yes

POP3 no yes no no

Multi yes yes yes yes

© 2006-2009 EdgeWave Inc. 57 All Rights Reserved

Appendix B

Appendix B: Configuration Element
Summary

The following table summarizes which elements can be used (and how many are allowed) in
each type of verifier. The table also indicates if the element is valid in sub-verifiers within a
Multi verifier. The symbols in the table count the number of the given element type allowed
in each of the possible locations. Here are their meanings:

Key Description

0 This element is never allowed.

0-1 One of these elements is optionally allowed.

0+ Any number of that element is allowed, from none on up.

1 Exactly one of these elements is required.

1+ One of these elements is required, more are allowed.

SAME The number of elements of the given type which are allowed in a sub-
verifier is the same as the number allowed for a top-level verifier of the
same type.

INHR When in the <Multi>, then any sub-verifiers that do not have the given
element will act as though they had the given element with the same
value as the one in the <Multi> "parent" element.

© 2006-2009 EdgeWave Inc. 59 All Rights Reserved

Allowed XML Elements in VrfyXML (Part 1)

Type Element LDAP Communigate RcptTo Postfix
Connect Timeout 0-1 0-1 0-1 0-1

Connect Credentials 0-1 1 0 0

Connect BackendMax 0-1 0-1 0-1 0-1

Connect BackendIdleTime 0-1 0-1 0-1 0-1

Connect Host 1+ 1+ 1+ 1+

Connect HostListOrder 0-1 0-1 0-1 0-1

Multi Domain 0 0 0 0

Event InterEnumTime 0-1 0-1 0 0

Event InterDiscTime 0 0 0 0

LDAP BaseDN 0+ 0 0 0

LDAP Canonical 0+ 0 0 0

LDAP Filter 0-1 0 0 0

LDAP StripPfx 0+ 0 0 0

LDAP EnumFrom 0+ 0 0 0

LDAP EnumTo 0+ 0 0 0

LDAP EnumFilter 0-1 0 0 0

LDAP EnumTest 0+ 0 0 0

LDAP DiscFilter 0-1 0 0 0

LDAP DiscAttr 0+ 0 0 0

DB Vendor 0 0 0 0

DB DBName 0 0 0 0

DB VrfyQuery 0 0 0 0

DB AuthQuery 0 0 0 0

DB EnumQuery 0 0 0 0

DB DiscQuery 0 0 0 0

SMTP Threshold 0 0 0-1 0-1

SMTP Errmap 0 0 0+ 0+

SMTP UseBrackets 0 0 0-1 0

© 2006-2009 EdgeWave Inc. 60 All Rights Reserved

Allowed XML Elements in VrfyXML (Part 2)

Type Element POP3 DataBase Multi Sub-Verifier
Connect Timeout 0-1 0-1 0-1 SAME, INHR

Connect Credentials 0 0-1 0 SAME

Connect BackendMax 0-1 0-1 0-1 SAME, INHR

Connect BackendIdleTime 0-1 0-1 0-1 SAME, INHR

Connect Host 1+ 1+2 0 SAME

Connect HostListOrder 0-1 0-1 0 SAME

Multi Domain 0 0 0 0+

Event InterEnumTime 0 0-1 0-1 0

Event InterDiscTime 0 0 0-1 0

LDAP BaseDN 0 0 0 SAME

LDAP Canonical 0 0 0 SAME

LDAP Filter 0 0 0 SAME

LDAP StripPfx 0 0 0 SAME

LDAP EnumFrom 0 0 0 SAME

LDAP EnumTo 0 0 0 SAME

LDAP EnumFilter 0 0 0 SAME

LDAP EnumTest 0 0 0 SAME

LDAP DiscFilter 0 0 0 SAME

LDAP DiscAttr 0 0 0 SAME

DB Vendor 0 1 0 SAME

DB DBName 0 1 0 SAME

DB VrfyQuery 0 1 0 SAME

DB AuthQuery 0 0-1 0 SAME

DB EnumQuery 0 0-1 0 SAME

DB DiscQuery 0 0-1 0 SAME

SMTP Threshold 0 0 0 SAME

SMTP Errmap 0 0 0 SAME

SMTP UseBrackets 0 0 0 SAME

© 2006-2009 EdgeWave Inc. 61 All Rights Reserved

	Contents
	Document Revisions
	Verifier Syntax
	VrfyXML Elements
	List of Elements and Attributes
	Connect Elements
	Event Elements
	LDAP Verifier Elements
	SMTP Verifier Elements
	Database Verifier Elements
	Sub- Verifier Elements

	The Vrfy Element
	Generic/ Shared Elements
	Meta Elements
	Connect Elements
	element: < Timeout>
	element: < Credentials>
	element: < BackendMax>
	element: < BackendIdleTime>
	element: < Host>
	element: < HostListOrder>
	Connect Elements Example: LDAP
	Connect Elements Example: SMTP VRFY
	Connect Elements Example: DataBase
	Connect Elements Example: Communigate
	Connect Elements Example: Multi

	Event Elements
	element: < InterEnumTime>
	element: < InterDiscTime>

	Verifier Types
	LDAP Verifiers
	About LDAP Searches
	element: < BaseDN>
	element: < Filter>
	element: < Canonical>
	element: < StripPfx>
	element: < EnumFilter>
	element: < EnumTest>
	element: < EnumTo>
	element: < EnumFrom>
	element: < DiscFilter>
	element: < DiscAttr>
	LDAP Example 1
	LDAP Example 2
	LDAP Example 3

	SMTP Verifiers
	element: < Threshold>
	element: < Errmap>
	element: < UseBrackets>
	SMTP Examples

	Communigate Verifier
	Communigate Example

	Database Verifiers
	Query Placeholders
	element: < Vendor>
	element: < DBName>
	element: < VrfyQuery>
	element: < AuthQuery>
	element: < DiscQuery>
	element: < EnumQuery>
	DataBase Examples

	Multi Verifier
	Sub- Verifier Attributes
	Element < Domain>
	Multi Verifier Example 1
	Multi Verifier Example 2
	Multi Verifier Example 3
	Multi Verifier Example 4

	Appendix A: Verifier Feature Implementation Status
	Appendix B: Configuration Element Summary

